X
Advance Search
  • Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Takahashi, H., Carrasco, A. J., Vital, L. F. R., Rezende, L. C. A., Egito, F., Rosa, G. M., and Sampaio, A. H. R. (2021). Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil. Earth Planet. Phys., 5(5), 397–406. DOI: 10.26464/epp2021045
    Citation: Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Takahashi, H., Carrasco, A. J., Vital, L. F. R., Rezende, L. C. A., Egito, F., Rosa, G. M., and Sampaio, A. H. R. (2021). Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil. Earth Planet. Phys., 5(5), 397–406. DOI: 10.26464/epp2021045
Open Access    

Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil

  • OI 630.0 nm airglow observations, from a new observatory at Bom Jesus de Lapa, were used to study the interaction between EPBs (Equatorial Plasma Bubbles) and the MSTID (Medium-Scale Traveling Ionospheric Disturbance) over the Northeast region in Brazil. On the night of September 16 to 17, 2020, an EPB was observed propagating eastward, in an apparent fossil stage, until it interacted with a dark band electrified MSTID (eMSTID). After the interaction, four EPBs merged, followed by an abrupt southward development and bifurcations. Analysis of the data suggests that an eastward polarization electric field, induced by the dark band eMSTID, forced the EPB into an upward drift, growing latitudinally along the magnetic field lines and then bifurcating.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return