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Key Points:
●  We construct an EPS formula to self-consistently determine the spectral shape of energetic particles over a wide energy range that

often shows two spectral transitions/breaks.
●  The EPS (extended pan-spectrum) formula incorporates previously proposed spectral forms, as well as their combined forms.
●  This fitting helps us compare the spectral features of different energetic particles, including their evolutions.
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Abstract:  The energy spectrum of energetic particles in space often shows a non-thermal spectral shape with two spectral
transitions/breaks over a wide energy range, carrying crucial information about their acceleration, release and transportation process. To
self-consistently characterize the spectral features of energetic particles, here we propose a novel extended pan-spectrum (EPS) formula
to fit the particle energy-flux spectrum, which has the merit that can incorporate many commonly used spectrum functions with one
spectral transition, including the pan-spectrum, double-power-law, Kappa, Ellison-Ramaty (ER) functions, etc. The formula can also
determine the spectral shape with two spectral transitions, including the triple-power-law function, Kappa distribution (at low energy)
plus power law (at high energy), power law (at low energy) plus ER function, etc. Considering the uncertainties in both J and E, we can fit
this EPS formula well to the representative energy spectra of various particle phenomena in space, including solar energetic particles
(electrons, protons, 3He and heavier ions), anomalous cosmic rays, solar wind suprathermal particles (halo and superhalo electrons;
pick-up ions and the suprathermal tail), etc. Therefore, the EPS fitting can help us self-consistently determine the spectral features of
different particle phenomena, and improve our understanding of the physical nature of the origin, acceleration, and transportation of
energetic particles in space.
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1.  Introduction
Energetic  particles  are  commonly  observed  in  space,  including
solar  energetic  particles  (SEPs)  (Ellison  and  Ramaty,  1985; Lin  RP,
1985; Lin  RP  and  Schwartz,  1987; Mason  et  al.,  2002; Mewaldt  et
al., 2005; Wang LH et al., 2006, 2022; Krucker et al., 2009; Wang XD
et al., 2022; Wei WW et al., 2022), solar wind suprathermal particles
(Lin RP, 1998; Gloeckler, 2003; Mason and Gloeckler, 2012; Yoon et
al.,  2012; Wang  LH  et  al.,  2015, 2022; Tao  JW  et  al.,  2016, 2021),
galactic  cosmic  rays  (Cummings  et  al.,  2016),  anomalous  cosmic
rays  (ACRs)  (Senanayake  et  al.,  2015),  energetic  particles  in
magnetosphere (Zong Q-G et al., 2017; Ye YG et al., 2021; Chen JL
et  al.,  2024),  etc.  The  space-borne  and  ground  observations
suggest that, in a wide energy range, these energy particle popu-
lations  show  a  non-thermal  spectrum  of  particle  intensity  versus
energy,  often  with  one  or  two  spectral  transitions/breaks  (Lin  RP
and  Schwartz,  1987; Krucker  et  al.,  2009; Wang  LH,  2022).  For
example, Lin RP (1985) reported that the SEP electrons exhibited a
power-law  flux  energy  spectrum  bending  upward  at  energies
above  ~10  keV,  then  turning  downward  at  energies  above  ~100

keV.  The observed energy spectral  shape can reflect  the physical
nature  of  these  energetic  particles’ origins,  acceleration,  and
transportation processes.

J (E) = A × E−β

It  is  customary to characterize the spectral  features by fitting the
observed  particle  energy  spectrum  to  a  parameterized  formula.
However, many previous studies obtained the spectral features by
fitting  the  energetic  particle  observation  to  a  function  with  an
assumed spectral shape involving no more than one spectral tran-
sition.  For  instance,  the  SEP  electrons  (Wang  LH  et  al.,  2006;
Krucker et al.,  2009) were often fitted to a single-power-law (SPL)
energy spectrum expressed as , or a classical double-
power-law (DPL) spectrum expressed as

J (E) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
A × ( E

E0
)−β1

, E < E0

A × ( E
E0
)−β2

, E > E0

, (1)

E0 β β1 β2

−

where E is  the  particle  energy, J is  the  particle  intensity  (flux  or
fluence), A is the amplitude,  is the break energy, and ,  or 
is  the  power-law  spectral  index.  The  SEP  protons  (Ellison  and
Ramaty, 1985; Mewaldt et al., 2005) were typically fitted to an Elli-
son Ramaty (ER) spectrum as

J (E) = A × E−βe
−

E
Ec ,

Ecwhere  is  the  cutoff  energy.  In  addition,  the  SEP 3He-rich  ions

  
First author: W. Y. Li, 1642264501lwy@pku.edu.cn
Correspondence to: L. H. Wang, wanglhwang@gmail.com

Y. F. Wang, wyffrank@gmail.com
Received 10 APR 2024; Accepted 07 NOV 2024.
First Published online 30 DEC 2024.
©2024 by Earth and Planetary Physics. 

 
 

http://www.eppcgs.org/
https://doi.org/10.26464/epp2025005
https://doi.org/10.26464/epp2025005
https://doi.org/10.26464/epp2025005


−

often show a power-law or curved energy spectrum (Mason et al.,
2002).  On the  other  hand,  the  solar  wind suprathermal  electrons
(Tao  JW  et  al.,  2016, 2021; Wang  LH,  2022)  consist  of  halo/strahl
populations  at  ~0.1 2  keV  that  were  generally  fitted  to  a  Kappa
distribution, expressed as

J (E) = En0

πm1/2
e (2κW0)3/2

Γ (κ + 1)
Γ (κ − 1

2
) Γ (3

2
) (1 +

E
κW0

)−(κ+1)
, (2)

κ n0

W0

with the Kappa index ,  the number  density  and the efficient
temperature ,  as  well  as  a  superhalo  population  at  energies
above 2 keV that is fitted well to an SPL energy spectrum.

Recently, Liu  ZX  et  al.  (2020) constructed  a  pan-spectrum  fitting
formula  with  continuous  energy  derivatives  of J at  any  orders,
which  incorporates  a  generalized  DPL  function,  SPL  function,  ER
function,  Kappa  function,  Maxwellian  function,  logarithmic-
parabola  (LP)  function,  etc.  Therefore,  the  pan-spectrum  formula
can  be  utilized  for  self-consistently  determining  the  spectral
shape of energetic/suprathermal particles with no more than one
spectral  transition/break,  as well  as characterizing the sharpness/
width  of  a  spectral  transition.  Furthermore,  they  improved  the
spectrum fitting method by considering the uncertainties in both
particle intensity and energy.

In  this  paper,  we  further  propose  an  extended  pan-spectrum
fitting formula with eight parameters, in order to self-consistently
determine  the  spectral  shape  of  energetic  particles  over  a  wide
energy  range  with  two  spectral  transitions/breaks.  Moreover,  we
develop  a  fitting  method  that  can  help  to  comparatively  investi-
gate  the  spectral  properties  between  various  energetic  particle
phenomena. 

2.  Extended Pan-Spectrum (EPS) Formula 

2.1  Construction of EPS Formula
To  fit  the  single-break  energy  spectra, Liu  ZX  et  al.  (2020)
proposed a pan-spectrum formula,

J (E) = A × E−β1[1 + ( E
E0
)α] β1−β2

α
,

integrated from
d lnJ
d lnE

= −
β1 + β2

2
+

β1 − β2

2
tanh (α (lnE − lnE0)

2
) ,

with continuous derivatives at any orders. It’s noted that the pan-
spectrum formula was so named because it can incorporate many
previously  used  spectrum  formulae,  typically  with  a  single  break
energy,  including  classical  DPL,  ER,  Kappa,  Maxwellian  function,
etc., as special cases.

In  order  to  achieve  a  full-range  energy  spectrum  fitting  for  the
common situations  of  one or  two break energies,  we extend the
formalism  of  pan-spectrum  to  a  formula  named  the “Extended
pan-spectrum (EPS) Formula”, that can fit a spectral shape with 0,
1, or 2 spectral transitions/breaks. The EPS formula simultaneously
meets the following requirements: (1) it can be divided into three
segments clearly; (2) it can merge the three segments into one or
two parts. We utilize two smooth tanh functions at break energies:

d lnJ
d lnE

= −
β1 + β3

2
+

β1 − β2

2
tanh (α1 (lnE − lnE1)

2
)+

β2 − β3

2
tanh (α2 (lnE − lnE2)

2
) . (3)

x → −∞ (+∞) , tanh (x) → −1(+1)Based on the property that when ,

it satisfies the piecewise requirement:

d lnJ
d lnE

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− β1, E ≪ E1

− β2, E1 ≪ E ≪ E2

− β3, E ≫ E2

. (4)

J (E)After  integrating  Equation  (3)  over  the  energy E,  we  obtain  the

formula of  as:

J (E) = A × E−β1[1 + ( E
E1
)α1] β1−β2

α1 [1 + ( E
E2
)α2] β2−β3

α2
, (5)

α1 α2 > 0

E1

E2 β1 β2 β3

α
α1 = 2 α2 = 10

where A is  the amplitude coefficient,  and  ( )  determines

the sharpness and width of energy transitions centering at  and

, , ,  and ,  respectively  indicate  the  spectral  indexes  of

three  segments.  As  defined  by Liu  ZX  et  al.  (2020),  the  spectral

transition/break  becomes  smoother  with  increased  width  as  the

parameter  (>0)  decreases. Figure  1 compares  the  sharpness/

width of  spectral  transition when  (top panels)  and 

(bottom  panels).  In  addition,  the  all-order  derivatives  of  the  EPS

formula  are  continuous,  with  the  1st-order  derivative  being  the

combination  of  tanh  functions  and  the  2nd-order  derivative

containing 2 dips.
 

2.2  Different Limiting Approximations
 

2.2.1  Three segments
(1) Generalized triple-power-law (TPL)

The formula  can be rewritten as  a  continuous  function (Wang W

et al., 2023):

J (E) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E−β1 [1 + ( E
E1
)α1] β1−β2

α1 [1 + ( E
E2
)α2] β2−β3

α2

,

E < E1e
− 2

α1

E−
β1+β2

2 [( E
E1
) α1

2

+ ( E
E1
)− α1

2 ] β1−β2
α1 [1 + ( E

E2
)α2] β2−β3

α2

,

E1e
− 2

α1 ≤ E ≤ E1e
2
α1

E−β2 [1 + ( E
E1
)−α1] β1−β2

α1 [1 + ( E
E2
)α2] β2−β3

α2

,

E1e
2
α1 < E < E2e

− 2
α2

E−
β2+β3

2 [1 + ( E
E1
)−α1] β1−β2

α1 [( E
E2
) α2

2

+ ( E
E2
)− α2

2 ] β2−β3
α2

,

E2e
− 2

α2 ≤ E ≤ E2e
2
α2

E−β3 [1 + ( E
E1
)−α1] β1−β2

α1 [1 + ( E
E2
)−α2] β2−β3

α2

,

E > E2e
2
α2

(6)

α1 α2

where  the  three  segments  are  connected  by  two  smooth  transi-

tions (when  and  are finite). The transition energies here are

defined as [E1e
− 2

α1 , E1e
2
α1 ] and [E2e

− 2
α2 , E2e

2
α2 ] .

α1 α2When both  and  approach infinity, the formula is equivalent

to a strict triple-power-law (TPL), which is simply described as:
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lim
α1→∞
α2→∞

J (E) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A × ( E
E1
)−β1

, ( E
E1
)α1

≪ 1

A × ( E
E1
)−β2

, ( E
E2
)α2

≪ 1 ≪ ( E
E1
)α1

A × ( E
E1
)−β3

, ( E
E2
)α2

≫ 1.

(7)

(2) Kappa+SPL

β1 = −1 α1 = 1When  and ,  the  formula  is  written as  a  continuous

function:

lim
β1=−1
α1=1

J (E) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(1 +
E
E1
)−(β2+1)[1 + ( E

E2
)α2] β2−β3

α2
,

E
E2

< e
− 2

α2

E1+
β2
2 −

β3
2 (1 +

E
E1
)−(β2+1)⎡⎢⎢⎢⎢⎢⎢⎢⎣( EE2

) α2

2
+ ( E

E2
)− α2

2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
β2−β3

α2

,

e
− 2

α2 ≤ E
E2

< e
2
α2

E−β3E(1+β2)(1 +
E
E1
)−(β2+1)[1 + ( E

E2
)α2] β2−β3

α2
,

E
E2

> e
2
α2

(8)

J (E)
E(1 +

E
E1
)−(β2+1)

κ

β2 + 1 W0 =
E1

β2

J (E)
−β3 E(1+β2)(1 +

E
E1
)−(β2+1)

E ≫ E1 α2

E2 ≫ E1

At low energies,  is a kappa-like distribution and the dominated

part  is ,  where  the  kappa  index  is  equivalent  to

 and the efficient temperature is described as . The

middle energies are in transition between Kappa-like distribution
and power-law distribution, shown by the second part of function
(8). At high energies,  is a power-law distribution, the spectral

index of which is  times a distribution , that

tends  to  approach  a  constant  when .  Therefore,  when 
approaches infinity and , the limitation of the formula is:

lim
β1=−1,α1=1

E2≫E1

J (E) ∝ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E(1 +

E
E1
)−(β2+1)

, E ≤ E2,

E−β3 , E > E2.

(9)

(3) SPL+ER

β3 → ∞ E2 → ∞When  and , the formula is written as a continuous
function:

lim
β3→∞
E2→∞

J (E) = A × E−β1[1 + ( E
E1
)α1] β1−β2

α1
× e

−( E
Ec
)α2

, Ec = E2( α2

β3 − β2
) 1
α2
,

(10)

Ec E2, α2, β2 β3where ,  defined  by ,  and ,  represents  the  cut-off
energy  that  divides  the  ER  function  into  a  power-law  below  and
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Figure 1.   Curves of EPS formula (a, d), and its first-order (b, e) and second-order (c, f) derivative. The dashed lines indicate the central transition,

and the double-ended arrows denote the transition widths. The top (bottom) panels show a smooth (sharp) transition with , when

, and .
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an exponential cut-off form above. This formula can be written in

three  parts,  containing  a  power-law  dominated  part,  a  transition

part, as well as an ER-dominated part:

lim
β3→∞
E2→∞

J (E) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E−β1[1 + ( E
E1
)α1] β1−β2

α1
× e

−( E
Ec
)α2

,

E
E1

< e
− 2

α1

E−
β2+β3

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣( EE1
) α1

2
+ ( E

E1
)− α1

2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
β1−β2

α1

× e
−( E

Ec
)α2

,

e
− 2

α1 ≤ E
E1

< e
2
α1

E−β2 e
−( E

Ec
)α2 [1 + ( E

E1
)α1] β1−β2

α1
,

E
E1

> e
2
α1

(11)

E < E1 ≪ Ec e
−( E

Ec
)α2

→ 1 α1 → ∞when ,  we  can  obtain ,  and  when ,

we can obtain the strict SPL + ER form:

lim
β3→∞,E2→∞

E1≪Ec

J (E) ∝ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
E−β1 , E ≪ E1,

E−β2 e
−( E

Ec
)α2

, E ≫ E1.
(12)

(4) LP+LP

α2 → 0 lnJWhen , via Taylor expression of , the formula is written as

a continuous function:

lim
α2→0

J (E) = A × E−β1[1 + ( E
E1
)α1] β1−β2

α1
E
β2−β3

2 e
α2(β2−β3)ln2E

8 . (13)

For simplicity, we use

φ (αi, E) = αi (βi − βi+1)
8

ln
2E, i = 1,2

to  refer  to  the  quadratic  term  of  Taylor  expression.  In  Equation

(13),

e
α2(β2−β3)ln2E

8

eφ(α2 ,E) lnJ = φ (α2, E)
[0,+∞]
is  rewritten  as ,  equivalent  to .  Given  that  the

logarithmic  parabola  term  acts  on  the  entire  energy  range

, it  should not be neglected when rewriting Equation (13)

to three parts:

Lim
α2→0

J (E) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E−β1[1 + ( E
E1
)α1] β1−β2

α1
E
β2−β3

2 e
φ(α2 ,E),
E
E1

< e
− 2

α1

E−
β2+β3

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣( EE1
) α1

2
+ ( E

E1
)− α1

2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
β1−β2

α1

E
β2−β3

2 e
φ(α2 ,E),

e
− 2

α1 ≤ E
E1

< e
2
α1

E−β2[1 + ( E
E1
)−α1] β1−β2

α1
E
β2−β3

2 e
φ(α2 ,E).
E
E1

> e
2
α1

(14)

α1 → ∞When , we can obtain a simplified form like:

lim
α1→∞
α2→0

J (E) ∝ ⎧⎪⎪⎪⎨⎪⎪⎪⎩E
−β1+

β2−β3
2 e

φ(α2 ,E), E ≪ E1,

E−
β2+β3

2 e
φ(α2 ,E), E ≫ E1,

(15)

E1

that  is  a  combination  of  two  logarithmic  parabola  at  energies

below  or  above ,  accompanied  with  different  energy  axes  of

symmetry. 

2.2.2  One or two segments
β2 = β3On  one  hand,  when ,  the  formula  degenerates  to  pan-

spectrum form (Liu ZX et al., 2020),

J (E) = A × E−β1[1 + ( E
E1
)α1] β1−β2

α1
,

β2 ≠ β3

α1 → 0 α2 → 0

which  can  fit  well  to  a  one- or  two-segment  spectrum.  On  the

other  hand,  when ,  the  formula  can  also  degenerate  to

fewer  segments.  For  instance,  when  and ,  the  EPS

formula is simplified to a logarithmic parabola:

lim
α1→0
α2→0

J (E) ∝ E−
β1+β3

2 e
φ(α1 ,E)+φ(α2 ,E) (16)

or the form:

lim
α1→0
α2→0

lnJ (E) = −
β1 + β3

2
lnE + φ (α1, E) + φ (α2, E) + constant, (17)

+∞

Emin

Emax

with an infinite transition energy interval of [0, ]. Note that the

logarithmic  parabola  formula  can't  be  characterized  by  fitting

parameters themselves,  and we usually use the slope at  and

 or the energy axis of symmetry to depict the spectrum shape.

To  summarize,  the  EPS  formula  can  cover  several  formulae

mentioned  above  (Equations  (16)−(17)),  under  different  limiting

approximations, representing a powerful and versatile, generalized

formula for interplanetary energetic spectra. 

3.  Methods 

3.1  Fitting Method

(xi, yi)
y = f (x, aaa) aaa = (a1, a2, . . . , am)

Suggested by Liu ZX et  al.  (2020),  we utilize  the non-linear  least-
square algorithms to fit a series of n data points  to a param-
eterized function, , where  is a vector of
m undetermined  parameters.  By  minimizing  the  reduced  chi-
square statistic (e.g., Bevington and Robinson, 2003; Liu ZX et al.,
2020), the best fit is obtained.

Ei, Ji

J = f (E, aaa) aaa = (A0, β1, β2, β3, lnE1, lnE2, α1, α2)
In this study, for a serious of n data points ( ), where E refers to
the central energy of every energy channel and J refers to the flux
at  every  energy  channel,  we  fit  the  data  points  to  our  proposed
EPS  formula, ,  where  is
an 8-dimensional  vector.  The reduced chi-square  statistic  is  used
to measure the error between the fitted and observed values. It is
the sum of normalized residuals. Considering the uncertainties in
both  energies  and  fluxes  suggested  by Liu  ZX  et  al.  (2020),  the
reduced chi-square statistic is defined as,

χ2
ν (aaa) = 1

n −m

n

∑
i=1

(Ji − f (Ei, a))2
σ2
Ji
+ f

′2
Ei
σ2
Ei

, (18)
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σ2
Ei σ2

Ji Ei Ji

f
′2
Ei = ∂f

∂E
∣E=Ei

where  ( ) is the standard deviation of observed  ( ), m is the

number of parameters, n is the number of data points, n−m is the

statistical degree of freedom, and .

χ2
ν (aaa)

χ2
ν (aaa)

We utilize the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
(Broyden,  1970; Fletcher,  1987)  to  find  the  minimum  of  in

the  multi-dimensional  parameter  space,  which  is  an  iterative
method  for  solving  unconstrained  nonlinear  optimization  prob-
lems.  The optimization problem is  to minimize .  It  proceeds

according to these steps:

aaa0 ϵStep (1) starts with a given initial estimate , a threshold  where

the iteration stops, and an iteration maximum number.

∇f (aaak) ∥∇f (aaak) ∥ < ϵ
f (aaak)

χ2
ν aaa

Step (2) calculates the gradient . If , the iteration

ends.  Otherwise,  the  iteration  moves  on.  (Note  that  here  is

the ( )).

Step  (3)  obtains  the  searching  direction  by  solving  the  quasi-
Newton equation,

BBBkpppk = −∇f (aaak) , (19)

BBBk aaak
∇f (aaak)

aaak

where  is an approximation of the Hessian matrix at , which is
updated iteratively at each stage, and  is the gradient of the

function evaluated at .

argmin f (aaak + αpppk)
f (aaak + αpppk)

Step (4) performs a one-dimensional optimization (line search) to
find  an  acceptable  step  size αk in  the  direction  obtained  in  Step
(3). αk = ,  which  means  that αk minimizes  the

equation .

sssk = αkpppk aaak+1 = aaak + ssskStep (5) sets  and updates .
Step (6) calculates

BBBk+1 = BBBk +
yyykyyy

T
k

yyyT
ksssk

−
BBBkssskBBB

T
ksss

T
k

sssTkBBBksssk
, yyyk = ∇f (aaak+1) − ∇f (aaak) . (20)

aaak+1 = aaakStep (7) takes  and iteratively moves to Step (2).

aaafit

aaa

Finally, the best fit  is obtained. As for estimating the uncertain-

ties of fitted parameters, as suggested by Liu ZX et al.  (2020) and
Press  (2007),  we  derive  the  covariance  matrix C of  from  the
Hessian matrix of

χ2 = (n −m) χ2
ν , C = (HHH

2
)−1

and

HHHij = (n −m) ∂χ2
ν

∂ai∂aj
.

aaafitThe fitted  is the diagonal vector of matrix C, and the standard

deviation of fitted parameters is defined as

δaaaifit =
√
CCCii.

χ2
νBesides using  to select the best results under a fitting model, in

our fitting procedure, we also calculate

ECVI = n −m
n − 1

χ2
ν +

2m
n

(Expected Cross-Validation Index) as a model selection index and
a smaller ECVI indicates a better fit model (Liu ZX et al., 2020). 

3.2  Parameter Analysis
We  utilize  parametric  bootstrap  (Efron,  1992; MacKenzie  et  al.,

J (E) aaa

2017)  to  characterize  the  uncertainties  of  parameter  estimation
and  test  the  correlations  between  parameters.  Parametric  boot-
strap is based on the assumption that the initial data set is from a
distribution of  a  specific  parametric  type.  In  this  paper,  the para-
metric  model  is  fitted  by  parameter  vector ,  then  boot-
strapped random samples are drawn from this model based upon
the initial data set. Repeating many times of fitting to the generated
samples  produces  the  probability  distribution  of  fitted  parame-
ters.

aaa = (e20, 2.0,
1.0, 3.5, 1.1 keV, 13.4 keV, 5.0, 3.0)(Ei, Ji)

Ei Ji

In  this  study,  given  an  initial  parameter  vector 
, we construct a group of 40 initial

data points . Then we generate 1000 groups of random data
points  by  adding  a  relative  Gaussian  noise  of  0.05  to  each  data
point in both  and . Finally, we fit these 1000 groups of data to
obtain a distribution of minimal chi-square and all fitted parame-
ters. During the bootstrap simulation, around 180 samples are not
converged  and  they  are  excluded  in  the  statistical  results  that
follow.

χ2
ν

Figure 2 is the bootstrap simulation results for EPS formula with all
eight  parameters  effective,  one  of  which  is  closest  to  the  initial
parameters,  shown  in  panel  (b).  The  simulated  probability

distribution agrees with the ideal reduced chi-square distribution
for  32  degrees  of  freedom  in  panel  (a)  (shown  as  dashed  lines).
Figure 2 (c−j) plot the histograms of the fitted parameters, indicat-
ing  that  all  the  spectral  parameters  are  reasonably  distributed,
and  in  accordance  with  the  initial  parameters  (shown  as  dashed
lines).

A0 β1

β2 lnE2

lnE1 lnE2

A0 β1

In  addition, Figure  3 plots  the  scatter  diagrams  between  fitted
parameters, also indicating that the averaged parameters (shown
as  green  horizontal  and  vertical  solid  lines)  agree  with  the  initial
parameters (shown as purple stars). We note: (1) the strong positive
correlation between  and  with a correlation coefficient CC >
0.7;  (2)  the  moderate  positive  correlation  between  and 
with  0.5  < CC <  0.7;  (3)  the  moderate  negative  correlation
between  and  with 0.5 < −CC < 0.7. These correlations are
reasonable. For example, if  increases,  will also increase, lead-
ing  to  the  formation  of  a  steeper  spectrum,  thus  reducing  the
residuals over the full energy range. 

4.  Applications of EPS Formula

σEi = 0.05Ei
σJi = 0.05Ji

We  apply  the  fitting  method  to  the  energy  spectra  of  various
representative  particle  phenomena  that  achieve  the  best  and
most  reliable  fit,  with  reasonable  parameters,  acceptable  uncer-
tainty estimations, as well as randomly distributed residuals. As for
the fitting uncertainties, since the measurements given by different
instruments behave differently, here we use both  and

 for consistency.

E −β1

E −β2 E1 E2

E −β3

Figure 4 and Table 1 show the fitted results of several typical parti-

cle phenomena. In Figure 4a, solar energetic electrons (SEEs) (Lin

RP, 1985) are fitted to a strict TPL with two sharp transitions, that

can  be  interpreted  as  a  power-law  of  at  very  low  energies,

 at middle energies that are far enough from both  and ,

and  at very high energies. By comparison, in Figure 4c, the O+

in  an  SEP  event  (Mewaldt  et  al.,  2005)  shows  a  generalized  TPL,

with  two  smooth  transitions,  that  are  0.28−0.54  and  1.2−15.5

MeV/nuc. In Figure 4e, the halo and superhalo electrons (Yoon et
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al.,  2012)  in  quiet  solar  wind  are  fitted  to  the  combination  (red

line)  of  a  kappa  distribution  at  low  energies  (shown  in  purple

text),  and  an  SPL  tail  at  high  energies  (shown  in  blue  text).  The

fitting is performed at suprathermal energies with a flux intensity

at least five times higher than the thermal Maxwellian distribution

estimate (Guo XN et al., 2024). The close fit observed here validates

our  limit  hypothesis.  Furthermore,  previous  studies  chose  to  fit

the  halo  electrons  and  superhalo  tail  separately  by  dividing  the

energies (Yoon et al., 2012; Wang LH, 2022), with similar results to

our monolithic fitting. In Figure 4g, the ions in a stream interaction

region (SIR) event (Wei WW et al., 2022) seem to show a combined

spectrum  of  SPL  and  ER-like  tail  at  energies  below/above  0.56

MeV/nuc. Figures  4i and k apply  the  method  to  other  usual

phenomena: the pick-up ions (PUI), the suprathermal tail (Gloeck-

ler,  2003; Mason and Gloeckler, 2012), and the ACRs (Senanayake

et  al.,  2015).  Each  are  generally  well-fitted  to  the  EPS  formula.

Note  that  the  EPS  fitting method has  already taken into  account

the  effects  of  data  from  different  instruments  with  different

energy channel resolutions, by considering the energy bandwidth

(energy  error)  of  observations.  In  addition,  the  presence  of  data

gaps could affect the uncertainty estimates (see Figure 4). 

5.  Conclusion
In  this  study,  we  construct  an  EPS  formula  (Equation  (5))  to  self-

consistently  determine  the  spectral  shape  of  energetic  particles

over  a  wide  energy  range  that  often  show  two  spectral  transi-
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Figure 2.   Histograms of fitted parameters and one fitted sample in bootstrap simulation. (a) The probability distribution function (PDF) of

simulated minimal  for the 1000 test samples, compared with the ideal reduced chi-square distribution (dashed line). (b) A sample in the

simulation, with fitted parameters written in, central transitions shown in red dashed lines, and transition widths shown in double-ended arrows.

(c j) The PDF of the eight simulated parameters, with the simulation initial parameters shown in dashed lines and the simulated average values

with standard deviations shown in green arrows.
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Figure 3.   Scatter plots between parameters in bootstrap simulation. The purple stars denote the initial parameters, and the green horizontal and
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SEE

10−1

10−2

10−3

10−4

101

100

102

Fl
ux

 (c
m

−2
 s

−1
 s

r−1
 e

V−1
)

E1 = 6.05 ±
0.57 keV

E2 = 100.1 ± 8.3 keV

β2 = 1.2 ± 0.04

β3 = 2.7 ± 0.08

TPL
(a)

−4
−2

0
2
4

Re
si

du
al

σ = 0.06

(b)

Lin (1985)

Energy (eV)
103 104 105 106

β1 = 2.8 ± 0.15

10−1

10−2

10−3

101

100

103

102

SEP Oxygen

Fl
ux

 (c
m

−2
 s

−1
 s

r−1
 k

eV
−1

 n
uc

)

α1 = 6.2 ± 5.3 α2 = 1.6 ± 0.5

E1 = 0.39 ± 0.06 MeV/nuc

E2 = 4.3 ± 0.6 MeV/nuc

β1 = 1.9 ± 0.29

β2 = 0.3 ± 0.33

β3 = 3.4 ± 0.29

TPL(wide transition)
(c)

Energy (keV/nuc)

−4
−2

0
2
4

Re
si

du
al

σ = 0.02

(d)

Mewaldt et al. (2005)

103 104102 105

Fl
ux

 (c
m

−2
 s

−1
 s

r−1
 e

V−1
)

Halo & Super halo electrons

E1 = 0.25 ±
0.03 keV

E2 = 2.6 ± 0.2 keV

β1 = −1.0 ± 0.00
α1 = 1.0 ± 0.0

Kappa + SPL
Kappa:
κ = 7.8 ± 0.4
Th = 36.8 eV
SPL:
β = 2.7 ± 0.04

(e)

−4
−2

0
2
4

Re
si

du
al

σ = 0.10

(f)

Yoon et al. (2012)

Energy (eV)
103 104101 102 105 106

10−2

10−4

10−6

104

102

100

106

Fl
ux

 (c
m

−2
 s

−1
 s

r−1
 k

eV
−1

)

−4
−2

0
2
4

Re
si

du
al

SIR evention

E1 = 0.56 ± 0.04 MeV

β1 = 4.4 ± 0.19

β2 = 1.4 ± 0.09

Ec2 = 9.4 MeV

(g)

σ = 0.12

(h)

Energy (keV)
103 104101 102 105

10−2

10−4

10−6

10−8

100
SPL + ER

Wei et al. (2022)

Fl
ux

 (c
m

−2
 s

−1
 s

r−1
 e

V−1
)

−4
−2

0
2
4

Re
si

du
al

PUI & Suprathermal tail

H+

He+

He2+

(i)

(j)

~E7.7

~E2.4
~E6.8

~E3.3~E4.2

~E2.2

~E2.9

~E0.6

Gloeckler et al. (2003)

Energy (eV)
103 104 105

10−2

10−4

10−6

104

102

100

σ = 0.09
σ = 0.12
σ = 0.09

10−1

10−2

10−3

101

100

103

102

−4
−2

0
2
4

Re
si

du
al

ACR

In
te

ns
ity

 (m
−2

 s
−1

 s
r−1

 M
eV

−1
) 

He+

Oxy+

0.1 1.0 10.0
Energy (MeV/nuc)

(k)

(l)

~E1.9

~E4.1

~E2.1

~E0.3

~E2.8

Senanayake et al. (2015)

100.0

σ = 0.08
σ = 0.13

 
− −

− − − −

Figure 4.   Best fits and the normalized residuals of the representative energy spectra of SEE (a b), SEP O+ (c d), halo and super halo electrons in

solar wind (e f), SIR ions (g h), pick-up ions and the suprathermal tail (i j), and ACRs (k l). The colored lines are explained by the text in each

panel, either for different formula parts or for different ion species.
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α1 α2

β1 β3 β2

tions/breaks. The EPS formula has eight parameters: the amplitude

coefficient A;  central  energy E1 and E2 of  low-energy  and  high-

energy spectral transition; sharpness parameter and  of low-

energy and high-energy transition; and power-law spectral  index

, ,  and ,  respectively,  at  energies  below  the  low-energy

transition, above the high-energy transition, and between the two

transitions.

β2 = β3

α1 (α2) → ∞

β1 = −1, α1 = 1, α2 → ∞, and E1 ≪ E2

E2 → ∞, β3 → ∞, and E1 ≪ Ec
α1 → ∞ and α2 → 0

This EPS formula can be rewritten as a piecewise form of general-

ized TPL. When , it degenerates to the PS formula proposed

by Liu ZX et  al.  (2020),  which can self-consistently  determine the

spectral shape with one or no spectral transitions/breaks (e.g., the

SPL,  DPL,  EP,  Kappa,  and  LP  functions).  Furthermore,  the  EPS

formula  can  be  transformed  under  certain  specific  parameter

conditions to spectral  forms with two spectral  transitions/breaks.

For  instance,  a  classical  TPL  with  sharp  spectral  breaks  when

, a Kappa distribution (at low energies) plus an SPL (at

high  energies)  when ,  an  SPL

(at  low  energies)  plus  an  ER-like  distribution  (at  high  energies)

when , and an LP plus LP distribution

when .

χ2
ν (aaa)

Considering the uncertainties in both E and J, we utilize the BFGS

algorithm  (Broyden,  1970; Fletcher,  1987)  in  order  to  minimize

 and  achieve  the  best  fit.  The  EPS  formula  fits  well  to  the

energy spectra of  various energetic  particle  phenomena (Table 1

and Figure 4), including SEPs (electrons, protons, 3He and heavier

ions), solar wind suprathermal particles (halo and superhalo elec-

trons;  pick-up ions and the suprathermal  tail),  ACRs,  etc.  The EPS

fitting  method  can  self-consistently  determine  the  spectral

features of energetic particle phenomena without first assuming a

given  spectral  shape.  Therefore,  it  can  help  us  comprehensively

understand  the  origin,  acceleration,  and  transport  processes  of

energetic  particles  over  a  wide  energy  spectrum,  as  well  as

comparatively  examine  the  physical  properties  of  different  ener-

getic particle phenomena. 
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Table 1.   Fitted parameters of Figure 4.

β1 β2 β3 E1 E2 α1 α2
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