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Abstract: The fault branching phenomenon, which may heavily influence the patterns of rupture propagation in fault systems, is one of
the geometric complexities of fault systems that is widely observed in nature. In this study, we investigate the effect of the branching
angle on the rupture inclination and the interaction between branch planes in two-fork branching fault systems by numerical simulation
and theoretical analysis based on Mohr’s circle. A friction law dependent on normal stress is used, and special attention is paid to
studying how ruptures on the upper and lower branch planes affect the stress and rupture on each other separately. The results show
that the two branch planes affect each other in different patterns and that the intensity of the effect changes with the branching angle.
The rupture of the lower branch plane has a negative effect on the rupture of the upper branch plane in the case of a small branching
angle but has almost no negative effect in the case of a large branching angle. The rupture of the upper branch plane, however,
suppresses the rupture of the lower branch plane regardless of whether the branching angle is large or small.

Keywords: branching faults; Mohr–Coulomb diagram; boundary integral equation method; earthquake source dynamics; rupture
selectivity

 

1.  Introduction
Branching faults are widely observed in nature, and many natural
earthquakes  involve  them,  such  as  the  2008 Ms 8.0  Wenchuan
earthquake (Hao KX et  al.,  2009),  the 1979 Mw 6.4 Imperial  Valley
earthquake  (Niazi,  1986),  the  1992 Mw 7.3  Landers  earthquake
(Sieh  et  al.,  1993)  and  the  2002 Ms 7.9  Denali  earthquake  (Eber-
hart-Phillips  et  al.,  2003).  Because  fault  branching  is  one  of  the
complexities  responsible  for  the complex patterns  of  earthquake
source ruptures, it  is important to study the dynamic rupture be-
havior of branching faults for earthquake hazard assessment and
disaster prevention.

Since  the  1990s,  seismologists  have  made  it  technically  possible
to consider fault branching in the research on earthquake source
dynamics. Because the boundary integral equation method (BIEM)
includes the  feature  of  reducing  the  dimensions  of  the  con-
sidered problem by one, the BIEM is advantageous in dealing with
complex fault geometry. Perhaps the simplest case is a static anti-
plane  crack  on  branching  faults,  which  was  first  considered  by
Tada and Yamashita (1997). Kame and Yamashita (1999) then sim-

ulated  the  spontaneous  bifurcation  of  a  crack  tip.  However,

neither  study  specifically  focused  on  the  geometry  of  branching

faults. Poliakov et al.  (2002) theoretically analyzed the stress field

around a dynamic crack tip and predicted how the prestress state

would affect the most favored direction for dynamic branching of

a  rupture. Kame  et  al.  (2003) conducted  simulations  of  dynamic

rupture  processes  on  branching  faults  and  studied  the  effects  of

the  prestress  state,  branching angle,  and rupture  velocity  on the

propensity  to  rupture. Bhat  et  al.  (2007) studied  the  effect  of

branch  length  and  predicted  the  interaction  between  a  rupture

on the main fault and on the branch plane. All  the above studies

used 2-D fault  models. Aochi et al.  (2000a) constructed a nonsin-

gular BIEM in a 3-D elastic medium, which was used to study the

effect of branching angles on the interactions between planes of

branching  faults  (Aochi  et  al.,  2000b)  and  the  effect  of  normal

stress  on the rupture selectivity  on branching faults  (Aochi  et  al.,

2002).  Recently, Ando  and  Kaneko  (2018) studied  the  effect  of

complex 3-D fault geometry on rupture propagation and termina-

tion during the 2016 Mw 7.9 Kaikoura earthquake, which occurred

on branching faults.

Other  simulation  methods,  such  as  the  finite  element  method

(FEM),  have  also  been  used  to  study  the  rupture  dynamics  of

branching faults. Oglesby et al.  (2003) simulated the 1999 Mw 7.1

Hector Mine earthquake on a complex fault system with a branch-
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ing  fault  to  the  north. DeDontney  et  al.  (2012) investigated  the
earthquake  rupture  behavior  on  branching  faults  in  an
elastic–plastic medium. Xu DD et al. (2016) computed the dynam-
ic ruptures along branching faults in the Longmen Mountain fault
and analyzed the effects of the prestress state and fault geometry
on rupture path selection. A limitation of the FEM is that different
artificial  treatments  on  the  branching  junctions  in  branching
faults may result in different simulation outcomes (DeDontney et
al., 2012).

Our  study aimed to determine the effect  of  branching angles  on
the rupture propagation on branching faults and provide a phys-
ical  explanation.  This  topic  has been studied previously. Kame et
al.  (2003) pointed  out  the  interactions  between  two  branch
planes, but they did not clarify the mechanism of the interactions.
Aochi et al. (2000b) and Dong S and Zhang HM (2019) studied the
stress interaction between the two branch planes, but the friction
law they used was independent of normal stress, and they did not
separate the stress effect generated by each part of the fault sys-
tem. In this research, we simulated the dynamic propagation of a
rupture on  a  3-D  two-fork  branching  fault  model  more  realistic-
ally  by  using  the  BIEM  with  the  slip-weakening  Coulomb  friction
law (Kame et al., 2003), which is dependent on normal stress. First,
the inclination of different angles of branch planes to rupture was
analyzed explicitly by using a Mohr–Coulomb diagram. The stress
accumulations  produced by  the  slip  of  one of  the  branch planes
on the other were then separated to analyze how the interactions
between  the  two  branch  planes  were  affected  by  the  branching
angle.

2.  Method and Mode

Nx

We  used  the  BIEM  to  simulate  dynamic  rupture  propagation.  By
considering  an  unstructured  mesh  of  a  branching  fault  system
containing  triangular elements, the discretized boundary integ-
ral equation can be written as (Qian F et al., 2019)

Tmp = T0
m +

Nx

∑
n=0

p

∑
q=1

VnqKmp/nq, (1)

Tmp m T0
m

Kmp/nq
m p

n q Vnq n
q

where  is  the  stress  of  element  at  time p,  is  the  initial

stress of element m,  is the stress kernel based on the trian-
gular  elements  (Feng  X  and  Zhang  HM,  2017),  which  represents
the stress increment of element  at time  generated by the unit
slip of element  at time , and  is the slip rate of element  at
time . Equation (1) implies that the stress change of an element is
influenced  by  the  previous  slip  history  of  all  elements,  and  the
contribution of the slip of each element can clearly be calculated.
Therefore, by using the BIEM, we can explicitly  analyze the inter-
action between any two segments of a fault system.

τp

τr Dc

As  is  usually  adopted  in  the  simulation  of  spontaneous  dynamic
ruptures,  the  slip-weakening  friction  law  (Ida,  1972) was  intro-
duced in this study. For any given element on the fault system, it
begins  to  rupture  as  soon  as  the  shear  stress  on  which  exceeds
the peak strength (yield stress) ,  and the shear stress decreases
linearly with the increase in its slip distance until it reaches the re-
sidual  stress  level ,  as  shown in Figure 1.  Variable  is  the slip-
weakening distance related to the rock property and is set at 0.57
m in this study. We introduced the Coulomb criteria into the slip-

τp τr

μs μd

weakening friction law (Kame et al., 2003), which defines  and 

of  an  element  proportional  to  its  normal  stress,  and  the  scale

factors were the static and dynamic friction coefficients,  and ,

respectively.  By  combining  the  slip-weakening  friction  law  and

the  BIEM,  we  could  determine  the  slip  rate  of  each  element  at

each time step, based on which the corresponding slip and stress

could also be obtained.

α1 α2

Δt

In this research,  we considered a branching fault  system in a 3-D

unbounded homogeneous isotropic elastic medium, as shown in

Figure 2a. Previous studies have shown that when a fault system is

located at a depth of more than 1 km below the surface, the influ-

ence from the surface is very small  and can be neglected (Zhang

HM  and  Chen  XF,  2006). The  entire  branching  fault  system  con-

sisted of  three  fault  planes:  a  30km × 10km primary  plane a and

two 15km × 10km branch planes b and c.  We used the Cartesian

coordinate system and took point A as the origin of the coordin-

ate,  with  the x and y axes  being parallel  to OA and OO’, respect-

ively. The angle between planes a and b and that between planes

a and c are denoted as  and , both of which are counted coun-

terclockwise. The fault model was discretized by unstructured tri-

angular elements.  Elements I, II,  and III lie on the midline of the

fault  system  and  are  next  to  the  intersection,  as  shown  in

Figure 2b and 2c. The minimum of the inscribed circle radiuses of

all the triangular elements was 249 m, and the time step  of our

simulation  was  0.044  s.  The  density  of  the  medium  was 3,000

kg/m3, and the P-wave and S-wave velocities in the medium were

5.6 km/s and 3.2 km/s, respectively.

τp

τ0
xx, τ

0
zz τ0

xz

τ0
xx = τ0

zz = −100 τ0
xz = 50

τp

The  entire  fault  system  was  loaded  with  a  uniform  initial  stress

field. It was assumed that the shear and normal stresses on planes

a, b,  and c had no y component, and neither did the slip on each

plane. As is shown in Figure 2a, a round nucleation zone with a ra-

dius of  2.5 km was located at  the center of  plane a,  in which the

shear stress was slightly greater than .  The rupture began from

the nucleation zone and propagated outward spontaneously. Giv-

en  the  initial  stress  components ,  and ,  the  normal  and

shear stresses on each plane could be determined, and the spati-

otemporal  history  of  the  rupture  process  in  order  of  time  could

then  be  calculated  by  using  the  BIEM  and  the  friction  law.

Throughout this study,  MPa, and  MPa. The

initial shear stress in the nucleation zone was 1.2  to generate an
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Figure 1.   Slip-weakening Coulomb friction law (Kame et al., 2003),

where  is the normal stress,  is the slip-weakening distance, and

 and  are static and dynamic friction coefficients, respectively. The

peak strength ( ), the residual stress ( ), and the shear stress (  at

any amount of slip (  is proportional to the normal compressive

stress ( ).
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α1 α2

α1 α2

initial  crack.  Because we were  primarily  focusing on the effect  of

,  on  the  rupture  patterns  of  planes b and c and the  interac-

tion between them in  this  study,  all  the values  of  geometric  and

physical quantities except  and  were fixed in our simulations.

3.  Numerical Results
α1 α2

Δα = α1 − α2

α1 = 10◦

α2 = −25◦

α1 = 15◦, 10◦, 5◦,−5◦,−15◦

In  our  simulations,  was  always  greater  than ,  which  always

placed  plane b above  plane c.  Therefore,  the  included  angle  of

planes b and c, ,  were  always  positive.  The  rupture

processes  on  two  series  of  faults  were  computed:  series  1,  in

which  remained constant, and α2 = −10°, −20°, −25°, −30°,

−40°,  and  series  2,  in  which  remained  constant,  and

.  Analysis  of  the numerical  results  will  be

helpful in understanding the effect of branching angles on how a

rupture on  the  upper  or  lower  branch  planes  separately  influ-

ences rupture propagation on the other branch plane.

α1 = 10◦

α2 = −25◦

α1 α2

Figures 3 and 4 are space–time diagrams of the slip rate on differ-

ent faults in series 1 and 2. For comparison, we also computed the

rupture processes on two folding faults, one of which consisted of

only  planes a and b,  with  (Figure  3a),  and  the  other  of

which consisted of only planes a and c, with  (Figure 4a),

to show the rupture front  patterns on one branch plane without

the influence of the other branch plane. Because the rupture pat-

terns on the primary plane a were barely affected by the rupture

on plane b or c with different  and , results on plane a are only

shown in Figures 3a (distance of 0 to 15 km) and 4a (distance of 0

to 15 km).

3.1  Results of Series 1

299Δt

α2 = −10◦,−20◦,
−25◦ α2 = −30◦

Figure 3a shows that in a folding fault system where plane c does

not  exist,  the  rupture  propagates  through  the  folding  line  and

reaches  the  farthest  edge  of  plane c at  around t = .  For  a

branching  fault  system  (Figures  3b–3f),  on  the  other  hand,  the

rupture on plane c is dominant in the cases of  and

. In the case of  (Figure 3e),  the rupture propagates

α2 = −40◦

α2

α2

Δα

α2 = −40◦

Δα

almost  equally  on both planes b and c,  and when  (Fig-

ure 3f), the rupture on plane b becomes dominant. In all five cases

of different  values, the rupture on plane b is suppressed in com-

parison  with  the  folding  fault  case  (Figure  3a), and  the  suppres-

sion becomes stronger as the absolute value of  becomes smal-

ler,  i.e.,  becomes  smaller.  As  shown  in Figure  5a,  the  rupture

propagation velocities  on plane b in different  cases  can be com-

pared in the space–time diagram of the rupture front. The corres-

ponding result on plane b in the folding fault model is also shown

for reference. Note that the rupture propagation velocity on plane

b when  is almost the same as that of the folding fault. In

other cases, this velocity becomes smaller with a smaller .

α2 = −10◦,−20◦, −25◦,

α2 = −30◦ −40◦

In Table 1,  we list the times when elements I, II,  and III begin to

crack in different cases of series 1, which indicate the times when

the rupture reaches the intersection and begins on planes b and c,

respectively.  In cases  and  plane c cracks be-

fore the rupture front on plane a reaches the intersection, where-

as plane b cracks after the rupture on plane a reaches the intersec-

tion.  In  cases  and ,  both planes b and c crack after

the rupture on plane a reaches the intersection. Generally, the lar-

ger the branching angle is, the sooner plane b cracks, and the later

plane c cracks.

3.2  Results of Series 2

α1 = 15◦ 10◦

α1 = −5◦ −15◦

α1 = 5◦,
α1 = 15◦ 5◦

α1 = −5◦ −15◦

α1 = 15◦, 10◦, 5◦ α1 = −5◦

α1 = −15◦

Figure  4a shows  that  the  rupture  can  propagate  to  and

throughout plane c without an effect on plane b.  The rupture on

plane c dominates in cases with  and , whereas the rup-

ture on plane b dominates in cases with  and . When

 the rupture propagates almost equally on planes b and c.

The slip rate on plane c decreases slightly from  to  and

violently  when  and .  In Figure  5b,  the  rupture  front

propagates  at  almost  the  same  velocity  on  plane c in  cases  with

 and  and at a slightly slower velocity when .

In  contrast,  in  the  case  of ,  the  crack  on  plane c obvi-

ously begins late and stops quickly.
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Figure 2.   Sketch of the fault model used in this study. (a) The entire fault system, which consists of three subfaults, a, b, and c. The angle

measured from plane a to plane b is , and the angle measured from plane a to plane c is . Both  and  are counted counterclockwise. The

fault system is divided into unstructured triangular elements. The positions of the nucleation zone and the intersection are denoted by arrows. (b)

Viewed from the top of the model, elements I and II are the gray triangles denoted by arrows, respectively. (c) Viewed from the bottom of the

model, elements I and III are the gray triangles denoted by arrows, respectively.
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α1 = 15◦, 10◦,
5◦

α1 = −5◦

α1 = −15◦

Table  2 shows the  times  when  the  rupture  reaches  the  intersec-

tion and begins on planes b and c. In cases with  and

, plane c cracks before the rupture on plane a reaches the inter-

section, after which plane b cracks. When , planes c and b
both  crack  before  the  rupture  on  plane a arrives at  the  intersec-

tion,  and  plane c cracks  sooner  than  plane b.  Different  from  this

scenario,  when ,  plane b cracks first,  and  then  the  rup-

ture on plane a arrives at the intersection and plane c cracks at al-

most the same time.

4.  Physical Explanations

4.1  Effect of Branching Angles on the Chronological Order

of Cracks

α1

α2

As shown in Tables 1 and 2, the chronological order at which ele-

ments I, II,  and III begin to crack varies with the values of  and

, which can be illustrated by the Mohr–Coulomb diagram shown

in Figure 6.

τp

τr

Given the initial stress field, we can draw a Mohr’s circle, on which

any  plane  with  a  certain  direction  in  this  stress  field  can  be

donated as a point on the circle. We introduce the slip-weakening

Coulomb friction law into the Mohr’s circle to evaluate the inclina-

tion  of  cracking  for  different  planes.  A  point  close  to  the  peak

strength line marked by  in Figure 6 on the Mohr’s circle corres-

ponds  to  a  plane  that  cracks  easily.  A  plane  is  not  permitted  to

crack  if  its  initial  shear  stress  is  less  than  the  residual  stress  level

marked by  in Figure 6 (Aochi et al., 2000a). The direction of the

plane that cracks the easiest can be defined as the optimal plane,

as shown below:

Φopt =
π
4
−

1
2
tan

−1μs, (2)

Φopt

−15.5◦

where  is measured from the maximum principal stress direc-

tion. We  can  then  estimate  the  preference  for  rupture  propaga-

tion  by  measuring  the  angle  between  a  particular  plane  and  the

optimal plane.  In this  study,  the angle measured from plane a to

the optimal plane was  (counted counterclockwise).
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Figure 3.   Space–time diagrams of the slip rate on the midline (y = 5

km) along the faults of series 1. (a) Results for a folding fault consisting

of planes a and b only (without plane c). The distance 0 to 15 km

corresponds to the part of x = 15 to 30 km on plane a (from the

nucleation zone to the intersection), and the distance 15 to 30 km

corresponds to plane b. (b–f) Results for series 1 with

 and , respectively. The distance 0 to

15 km corresponds to plane b), and the distance 15 to 30 km

corresponds to plane c.

299

200

100

0
0 15 30

Ti
m

e 
(Δ

t)

Distance (km)
0 15 30

Distance (km)

299

200

100

0

Ti
m

e 
(Δ

t)

299

200

100

0

Ti
m

e 
(Δ

t)

(a) (b)

(c) (d)

(e) (f)

15°

10° 5°

-5° -15°

0 2 4 6 8 10
Slip Rate (m.s-1)

 

α1 = 15◦, 10◦, 5◦,−5◦, −15◦

Figure 4.   Same as Figure 3 except for series 2 here. (a) Results for a

folding fault consisting of planes a and c only (without plane b). The

distance 0 to 15 km corresponds to the part of x = 15 to 30 km on

plane a (from the nucleation zone to the intersection), and the

distance 15 to 30 km corresponds to plane c. (b–f) Results for series 2

with  and , respectively. The distance 0 to 15

km corresponds to plane b, and the distance 15 to 30 km corresponds

to plane c.
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α2 = −10◦,−20◦, −25◦,

α1 ≥ −5◦

In series 1,  because plane a is  closer to the optimal plane than is

plane b, the crack cannot begin on plane b unless the rupture has

reached the intersection. Plane c, with  and  is

closer  to  the  optimal  plane  than  is  plane a.  Thus,  element III
cracks before element I does. In series 2, element III cracks before

element I does when  because plane c is closer to the op-

timal plane than is plane a.

The Mohr–Coulomb diagram can explain  only  the preference for

rupture  propagation  before  either  of  the  two  branch  planes

cracks because a branch plane will  produce a stress effect on the

α1 = −15◦ α2 = −25◦other once it cracks. Take  and  as an example.

Plane c is supposed to crack before the rupture arrives at the inter-

section because it is closer to the optimal plane than is plane a. In

fact,  however,  it  cracks after  the rupture reaches the intersection

because plane b cracks first and thereafter affects the rupture on

plane c.

4.2  Effect of the Lower Branch on the Upper One

Taelement II, p Tcelement II, p

Because  element II is  the  first  element  on  plane b to  crack,  the

stress  change  on  plane b indicates  its  potential  for  rupture

growth.  In  series  1,  we  investigated  the  normal  and  shear  stress

change on element II produced by the rupture on planes a and c,

denoted as  and  separately,  by  changing the

sum in Equation (1) as follows

Taelement II, p = Taelement II, 0 +∑n2

n=n1
∑p

q=1
VnqKmp/nq, (3)

Tcelement II, p = Tcelement II, 0 +∑n4

n=n3
∑p

q=1
VnqKmp/nq, (4)

n1 n2

n3 n4

α2

α2

where  elements  numbered  from  to  are  all  the  elements  on

plane a and those numbered from  to  are all the elements on

plane c. The slip rate on plane a is almost independent of planes b
and c, so according to Equation (3), its effect on the stress field of

plane b barely  changes  with .  We  show  this  effect  alone  in
Figure  7a to  indicate  that  the  rupture  on  plane a promotes  the

cracking of plane b. The effects of plane c alone on element II with

different  are shown in Figure 7b–7f.

α2 = −10◦

(α1, α2) = (10◦,−10◦) α2 = −20◦ −25◦

α2 = −30◦

α2 = −40◦

In the case of  (Figure 7b), the shear stress decreases rap-

idly  while  the  normal  stress  decreases  slowly  on  element II,
quickly  moving  the  stress  on  element II away  from  the  peak

strength line on the Mohr–Coulomb diagram. The stress variation

on  element II produced  by  plane c is almost  opposite  that  pro-

duced by plane a. Thus, if plane c cracks prior to plane b, it rapidly

produces a negative effect  on the rupture of  plane b,  which is  in

accordance  with  the  fact  that  plane b cracks  both  very  late  and

very  weakly  when .  When  and 

(Figure 7c and 7d), the normal stress decreases more quickly and

the  shear  stress  decreases  more  slowly  on  element II.  The  stress

on element II still moves away from the peak strength line, but at

a slower speed. When  (Figure 7e), plane c cracks before

plane b, but the effect of the rupture on plane c slowly moves the
stress on element II away from the peak strength line so that the

rupture  can  begin  on  plane b shortly  after  plane c cracks  and

propagates throughout plane b.  Finally,  when , the rup-
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Figure 5.   Time–distance diagrams of rupture fronts (a) on plane b in

series 1 and (b) on plane c in series 2. The gray dotted lines in (a) and

(b) illustrate the rupture fronts on folding planes b and c with 

and , respectively.

tcTable 1.   Times at which elements I, II, and III begin to crack ( ) for
the simulations in series 1.

α2

tc/Δt
Element I Element II Element III

−10◦
120 134 112

−20◦
119 132 110

−25◦
120 131 117

−30◦
120 129 122

−40◦
120 129 127

tcTable 2.   Times at which elements I, II, and III begin to crack ( ) for
the simulations in series 2.

α1

tc/Δt
Element I Element II Element III

15◦
120 132 117

10◦
119 131 117

5◦
120 128 117

−5◦
120 119 117

−15◦
120 107 121
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, and (b–f) plane c in series 1 with different  (  and . The ordinate and abscissa of a dot

represent the shear stress and normal stress on element II, respectively, and the color represents the time of the dot.
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ture  of  plane c is  weak,  and  the  trend  of  its  effect  on  element II
(Figure  7f)  indicates  that  the  rupture  on  plane b is scarcely  im-

peded.

Δα = α1 − α2

Generally,  the rupture on plane c (i.e.,  the lower  branch)  reduces

both  the  normal  stress  and  the  shear  stress  on  element II.  As

 increases, the shear stress decreases more slowly and

the normal stress decreases more quickly,  which lessens the sup-

pression on the rupture of plane b.

4.3  Effect of the Upper Branch on the Lower One
In series 2, we calculated the stress variation on element III gener-

ated by planes a and b, as shown in Figure 8. Because the rupture

on plane a is barely affected by the ruptures on planes b and c, its

effect on the stress on element III changes little in different cases

in series 2. Figure 8a shows that the rupture on plane a causes the

stress  on element III to  approach the peak strength line quickly,

which promotes its cracking.

α1 = 15◦, 10◦, 5◦When  and  (Figure 8b–8d),  the rupture on plane b

α1

moves the stress on element III away from the peak strength line,
but this effect is very weak because of the suppressed rupture on
plane b. To investigate specifically how the rupture on plane b af-
fects  the  stress  on  element III without  the  influence  of  plane a
resulting from different  in  these three cases,  we assumed that
the direction of plane a equaled that of plane b and that plane c
did not produce any stress effect on plane b so that the rupture on
plane a would propagate to plane b unimpeded. We then calcu-
lated the effect of plane b on the stress on element c, as shown in
Figure 9. The only difference between Figure 9 and Figure 8b–8d
is that the ruptures on plane b in Figure 9 are stronger than those
in Figure 8b–8f.

Δα

Δα
Δα

Figure  8e–8f and Figure  9 show  that  the  rupture  on  plane b in-
creases the  normal  stress  and  decreases  the  shear  stress  on  ele-
ment III.  When  the  value  of  is large,  the  normal  stress  in-
creases more rapidly and the shear stress decreases more slowly,
whereas  the  normal  stress  increases  more  slowly  and  the  shear
stress  decreases  more  rapidly  when  becomes  smaller.  Within
the range of  investigated in this  study,  the stress  on element
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Δα Δα

α1 = −15◦

(α1, α2) = (−15◦,−25◦)

III moves  away  from  the  peak  strength  line  no  matter  whether
the  value  of  is  large  or  small,  and  the  medium  value  of 
causes the stress on element III away from the peak strength line
to  be  the  fastest.  When  (Figure  8f),  plane b cracks  very
early  and  begins  to  produce  a  negative  effect  on  the  rupture  of
plane c, making it difficult for plane c to crack, which is in accord-
ance  with  the  fact  that  plane c hardly  cracks  when

.

5.  Conclusions
In this paper, we applied the BIEM to 3-D branching fault systems
to simulate  the  dynamic  rupture  process  on  different  fault  mod-
els with different branch angles in two series.  Under a given uni-
form  initial  stress  state,  the  direction  of  a  plane  determines  the
normal and shear stress on that plane, which affects its tendency

to  crack.  We  calculated  the  direction  of  the  optimal  plane  and
used the Mohr–Coulomb diagram to illustrate that a plane cracks
easily if it is close to the optimal plane on the Mohr–Coulomb dia-
gram and is difficult to crack if it is far from the optimal plane.

In  a  branching  fault  system  with  two  branch  planes,  the  stress
change produced  as  one  of  the  branch  planes  ruptures  will  pro-
mote or  suppress  the  rupture  on  the  other  branch  plane.  We  in-
vestigated this effect by separating the stress change on a branch
fault  produced  by  the  other  branch  plane  from  the  total  stress
change,  as  summarized  in Table  3.  After  the  lower  branch  plane
cracks,  it  causes  both  the  normal  and  shear  stress  on  the  upper
branch  plane  to  decrease.  When  the  angle  between  the  two
branch  planes  is  small,  it  decreases  the  shear  stress  rapidly  and
decreases  the  normal  stress  slowly  on  the  upper  branch  plane,
which suppresses the rupture on the plane. In contrast, when the
angle becomes larger, the shear stress decreases more slowly and
the normal stress decreases more rapidly; thus, the suppression of
the rupture on the upper branch plane is weakened. The rupture
on  the  upper  branch  plane  causes  the  normal  stress  to  increase
and the  shear  stress  to  decrease  on the  lower  branch plane.  The
normal stress  increases  more  slowly  and  the  shear  stress  de-
creases  more  rapidly  when  the  angle  between  the  two  branch
planes becomes larger. Regardless of whether the angle between
the two branch planes is large or small,  the rupture on the lower
branch  plane  is  suppressed  by  the  rupture  on  the  upper  branch
plane.
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