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Abstract: This study tested five methods widely used in estimating the complete magnitudes (MC) of earthquake catalogs. Using catalogs
of observed earthquake properties, we test the performance of these five algorithms under several challenging conditions, such as small
volume of events and spatial-temporal heterogeneity, in order to see whether the algorithms are stable and in agreement with known
data. We find that the maximum curvature method (MAXC) has perfect stability, but will significantly underestimate MC unless
heterogeneity is absent. MC estimated by the b-value stability method (MBS) requires many events to reach a stable result. Results from
the goodness of fit method (GFT) were unstable when heterogeneity lowered the fitness level. The entire magnitude range method
(EMR) is relatively stable in most conditions, and can reflect the change in MC when heterogeneity exists, but when the incomplete part of
the earthquake catalog is dismissed, this method fails. The median-based analysis of the segment slope method (MBASS) can tolerate
small sample size, but is incapable of reflecting the missing degree of small events in aftershock sequences. In conditions where MC

changes rapidly, such as in aftershock sequences, observing the time sequence directly can give a precise estimation of the complete
sub-catalog, but only when the number of events available for study is large enough can the MAXC, GFT, and MBS methods give a
similarly reliable estimation.
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1.  Introduction
Earthquake catalogs are important for seismicity analysis and seis-

mic hazard assessment.  In compiling earthquake catalogs,  not all

events can be detected and thus cataloged, for example when the

event is too small or the ambient noise is too large, and when the

aftershock  waveform  is  overwhelmed  by  the  main  shock  (Iwata,

2008).  The  incompleteness  of  earthquake  catalogs  can  signific-

antly  affect  any  subsequent  analysis  that  relies  on  catalog  data.
Thus,  assessing  the  completeness  of  an  earthquake  catalog  is  a

necessary step in some researches, such as b-value estimation.

The  complete  magnitude  (MC)  of  an  eearthquake  catalog  is

defined as: the magnitude of the weakest event which is fully col-

lected in an earthquake catalog. A catalog that includes all events

whose  magnitude  is  greater  or  equal  to MC is  called  a  complete
catalog. In empirical studies, complete catalogs have been found

to exhibit a log-linear frequency magnitude distribution (FMD) as

depicted by equation (1):

log10N = a−b (m−MC) . m ≥ MC (1)

This  statistical  law  is  called  the  G-R  law  (Gutenberg  and  Richter,

1944); N represents the number of  events with magnitude larger

than magnitude m, and MC is the smallest magnitude in the com-

plete catalog.

Traditionally, MC is estimated based on this relationship, where we

estimate MC as the point deviating from the G-R law. Such meth-

ods  are  less  computationally  intensive,  and  are  still  frequently

used.  Another  kind  of  method,  based  on  waveform  information

(e.g., Gomberg, 1991), is rarely applied due to the huge computa-

tion time it requires. Another important parameter limiting use of

the G-R law is  the b-value,  which controls  the relative number of

large  and  small  earthquakes.  Relative  studies  (e.g., Schorlemmer

et al.,  2005) have shown that b-values may reflect the stress level

of the particular region; we can thus consider the b-value as hav-

ing  real  physical  meaning. Aki  (1965) introduced  what  has  be-

come the common method for b-value estimation, the maximum

likelihood estimation, as is shown in equation (2):

b =
log10e

⟨M⟩−
(
MC−

∆m
2

) . (2)

⟨M⟩In  the  above  equation,  is  the  mean  of  the  magnitudes  that

are  larger  than MC;  Δm is  the  width  of  the  magnitude  bin,  com-

monly chosen to be 0.1. In this relationship, MC directly affects the

estimation  of b-value,  so  we  can  reasonably  assume  that  our  es-

timation of MC can affect the b-value estimate, and this is verified

in some tests (e.g., Woessner and Wiemer, 2005).

The complete catalog is generally extracted from a raw catalog by

dismissing  its  incomplete  part.  And  since  the  frequency  dimen-
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sion is log scaled in FMD, a small difference in MC can significantly

change N,  the number of events: When MC is over-estimated, the

quantity  of  available  data  is  considerably  decreased;  this  reduc-

tion  affects  the  stability  of  further  calculations,  especially  if  the

raw  catalog  is  small.  On  the  other  hand,  an  under-estimated MC

will  result  in  biased  results  due  to  the  uncollected  (incomplete)

events. The importance of correctly estimating MC is thus clear on

these  grounds  alone.  But  since  equation  (2)  and  related  studies

correlate MC and b-value, an accurate MC estimation is also crucial

to correctly estimating the b-value.

In  real  applications,  considering  the  spatiotemporal  heterogen-
eity  of MC,  investigators  must  consider  the  pattern  of  an  event’s
spatiotemporal  distribution,  so  as  to  determine  its  extension  in
space and time,  when the catalog is  relatively complete (Wiemer
and  Wyss,  2000).  When  spatial  heterogeneity  exists,  in  mapping
MC the data used to calculate MC on each spatial grid can be het-
erogeneous.  A  robust  technique  for  mapping MC should  give  a
median  estimation  if  the  data  on  a  grid  is  composed  of  subsets
with different MC. On the other hand, due to a high spatial resolu-
tion or low seismicity, there can be only about 100 events in one
grid (Mignan et al., 2011), which challenges the algorithm’s stabil-
ity. In conditions where MC changes rapidly, such as in aftershock
sequences, MC will be quite large immediately following the main
shock, since the waveform of aftershocks is affected or even over-
whelmed  by  that  of  the  main  shock.  However,  in  determining
parameters of some models of seismicity (such as Omori-Utsu for-
mula, Utsu, 1957), a complete sub-catalog is required (Zhuang JC
et al.,  2012).  Thus,  a  standard test  for  a  method’s  performance in
temporal  heterogeneity  is  whether  it  can  detect  sensitively  the
point at which MC decreases to a stable level.

In  brief,  several  alternative  methods  for  calculating MC are  often
used in such special conditions as: small volume of events, spatial
MC heterogeneity, and rapid change of MC temporally. We will test
the  performance  of  the  five  existing  methods,  in  these  special
situations,  for MC estimation  based  on  earthquake  catalogs,  and
proceed to give suggestions for when each might be most appro-
priately  used.  Similar  work  has  been  done  using  synthetic  cata-
logs (such as Huang YL et al., 2016); our study provides further val-
idation by  testing on data  from real  catalogs  of  different  charac-
ters and from different seismic networks.

2.  Data
We used three groups of datasets for testing three aspects of MC

estimation performance. A detailed description follows.

2.1  Dependence on Sample Size
In this part of the test, we use the same data sets as in the original

paper  introducing  the  MBASS  method  (Amorese,  2007)  .  To  test

his new method, Amorese tried to reproduce the results in Woess-

ner and Wiemer (2005) (abbreviated as W&W2005 hereafter), and

his data sets are basically the same as in W&W2005. These are the

data sets:

(1)  Regional  catalog  ECOS,  which  is  a  subset  of  the  Earthquake

Catalog of Swiss events from the Swiss Seismological Service. The

subset  we  used  records  earthquakes  in  the  southern  province

Wallis from 1992 to 1998; the magnitude scale is local magnitude.

(2)  Regional  catalog  NCSN,  compiled  by  the  Northern  California

Seismic Network. We use a subset from the San Francisco Bay area

during 1998–2002; this catalog gives coda-duration magnitudes.

(3) Volcanic region NIED, maintained by the National Research In-

stitute for Earth Science and Disaster Prevention. The subset cov-

ers  1992–2002  for  a  volcanic  region  in  Kanto  province;  mag-

nitudes are locally reported.

(4) Global catalog CMT, a subset of the Harvard Centroid Moment

Tensor  catalog,  1983–2002;  only  shallow depth earthquakes  (d <

70 km) are included.

A brief description of each catalog is summarized in Table 1,  and

their FMD are plotted in Figure 1. The catalogs are from different

tectonic  regions  and  of  different  magnitude  scales,  which  in-

creases  the  likelihood  that  our  results  will  be  reliable  in  a  wide

range of situations.

Here  we  chose  the  data  set  from Schorlemmer  and  Woessner

(2008),  a  subset  from  the  Southern  California  Seismic  Network

(SCSN),  with a time span of  January 2001 to July 2007.  We chose

this  earthquake  catalog  because  previous  studies  have  mapped

its MC distribution  (Schorlemmer  and  Woessner,  2008).  Two  sub-

regions  with  significant  different MC values  are  selected,  whose

data  are  mixed  to  create  heterogeneity,  which  is  what  can  hap-

pen  in  real MC mapping  procedures.  We  fixed  the  size  of  the

mixed catalog,  and changed the mixing ratio to see the effect  of

heterogeneity on each algorithm. The expectation is that the res-

ulting MC will change linearly with increasing mixing ratio.

2.2  Detectability of Short Term Missing of Small Events
A complete sub catalog is needed in fitting an event to models of

seismicity. In terms of aftershock sequence, the starting time for a

complete catalog needs to be estimated. Zhuang JC et al.,  (2012)

suggests that this starting time can be estimated by observing dir-

ectly the time sequence, which is magnitude in respect of events’

index.  We wish to see if  the algorithms for MC estimation can re-

flect  the missing of  events,  and whether  the results  can be com-

pared to that of the ‘visual inspection method’. We select four sets

of aftershock sequences.

Table 1.   Detailed information for the four catalogs used here

ECOS NCSN NIED CMT

Property Regional Regional Volcanic Global

Time Span 1992–2002 1998–2002 1992–2002 1983–2002

Spatial Range 6.8°E–8.4°E 45.9°N–46.65°N 123°W–120.5°W 36.0°N–39.0°N 138.95°E–139.35°E 34.08°N–35.05°N

Sample Size 985 19690 31240 16472
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(1)  Wenchuan  earthquake:  the  aftershock  sequence  occurred  on

12 May 2008 in Sichuan Province,  China,  with a magnitude M8.0.

The data set is from the appendix of an article on temporal seismi-

city  model  on  CORSSA  (Zhuang  JC  et  al.,  2012).  There  are  198

events in the catalog.

(2)  Fukuoka earthquake:  16  August  2005 offshore  of  the western

area  of  Fukuoka-Ken,  Kyushu,  Japan.  The aftershock  data  are  the

test  data set  in  the software SASeis2006 (Ogata,  2006).  There are

403 events in the catalog.

(3)  Miyagi  earthquake: M6.2,  26 July 2003 in northern Miyaji-Ken,

northern  Japan.  The  test  data  set  is  in  the  software  SASeis2006

(Ogata, 2006). We extract a subset with magnitude larger than 1.5,

1459 events in this catalog.

(4) Landers earthquake: a 1992 MW7.3 aftershock sequence extrac-
ted from the SCSN catalog.  We use the subset  of  events  of  mag-
nitude larger than 1. The selected subset includes 19707 events.

These  aftershock  sequences  are  from  different  tectonic  regions
and the data were collected with different detecting abilities (thus
characterized  by  differing  numbers  of  events).  This  variability  in
our  data  sets  can  give  us  important  knowledge  of  how  well  the
methods work in different situations.

3.  Method

3.1  Algorithms for MC Estimation Based on Earthquake

Catalog
The five methods that are used for estimating MC:

(1)  MAXC,  maximum  curvature  method  by Wiemer  and  Wyss
(2000). The magnitude corresponding to the point of the maxim-
um curvature  deviating G-R law is  considered an estimate of MC,
i.e.,  the  magnitude  connecting  to  the  linear  cumulative  part  of
FMD.

(2) GFT, goodness-of-fit method by Wiemer and Wyss (2000). This
method  extracts  subsets  with  ascending  cut-off  magnitude MCO,
and  measures  the  deviation  between  these  subsets  and  the  G-R
law by making linear fits to the G-R law, which will finally output a
series  of  goodness-of-fit  values.  The  goodness-of-fit R is  defined
as:

R (a,b,MCO) = 100−
∑Mmax

MCO
|Bi−S i|∑
i Bi

100
 , (3)

where Bi and Si are the observed and predicted number of events
in i-th magnitude bin. With larger MCO, fewer events are missed in
the  catalog,  and the  corresponding R value  tends  to  grow.  Once
this R reaches a confidence level of 95% or 90%, the correspond-
ing MCO is  determined  as MC.  Note  that  if  a  90%  goodness-of-fit
level cannot be reached, the GFT method fails.

(3) MBS, MC by b-value stability by Cao AM and Gao SS (2002) and
modified  by Woessner  and Wiemer  (2005).  This  method,  too,  ex-
tracts  subsets  with  ascending  cut-off  magnitude MCO,  and  calcu-
lates  the  corresponding b-values  for  each  subset.  When  small
events are not recorded, larger earthquakes constitute a relatively
heaver part of the subset of small MCO,  and the corresponding b-
value  is  too  low;  with MCO ascending,  the  estimated b-value  be-
comes higher  and finally  reaches a  ‘plateau’.  The first MCO result-
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Figure 1.   FMD of four real catalogs used here, which is from the origin paper for MBASS method (Amorese, 2007).
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ing in a stable b-value is the estimated MC.

With  development  of  this  method,  the  criterion  for  stability  is

modified. Cao  AM  and  Gao  SS  (2002) measures  the  change  of b-

value  for  two  successive MCO,  and b-value  is  considered  stable  if

the  difference  is  smaller  than  0.03.  But Woessner  and  Wiemer

(2005) found that this criterion will  lead to poor numerical stabil-

ity  of  the  MBS  method.  Their  criterion  measures  the  difference

between the b-value for a certain MCO and the average b-value for

this MCO, which is defined by equation (4):

bave =
∑MCO+win_M

MCO
b (MCO)∆m/

(
win_M+0.1

)
, (4)

where Δm is the size of magnitude bin, and win_M is the window

length for calculating.

A b-value is considered stable if the difference is smaller than the

b-value uncertainty by Shi YL and Bolt (1982), given by the follow-

ing equation:

δb = 2.3b2

√∑N
i=1 (Mi−⟨M⟩)
N (N −1)

, (5)

⟨M⟩
where b is the calculated b-value; N is the number of events to cal-

culate b;  is the average magnitude.

(4)  EMR,  entire  magnitude  range  method  by Woessner  and

Wiemer (2005). This method tries to fit the entire non-cumulative

part  of  FMD,  instead  of  merely  the  linear  complete  part  of  FMD.

Woessner  and  Wiemer  (2005) used  the  normal  cumulative  distri-

bution  function  (CDF)  to  model  the  incomplete  part  of  the  seis-

mic intensity, and the G-R law for the complete part, which is de-

picted  by  equation  (6).  They  compared  normal  CDF  with  other

CDFs, and relative tests show that normal CDF fits best.

λ (m|µ,σ)=

λ(m|µ,σ,m < MC)=
∫ m

−∞

1
√

2πσ
exp

(
−(x−µ)2

2σ2

)
dx,

λ (m|µ,σ,m ≥ MC) = exp(−β (m−MC)) .
(6)

The  detailed  procedure  is:  first  divide  the  catalog  into  complete
and  incomplete  parts  by  an  ascending  cut-off  magnitude,  and
then fit the data separately. For each MCO, there are four paramet-
ers  changeable: σ and μ of  the  normal  CDF,  and a-value  and b-
value in the G-R law. The MCO that leads to the best fit is the final
MC estimation.

(5)  MBASS,  the  median-based  analysis  of  the  segment  slope  by

Amorese  (2007).  The  MBASS  method  calculates MC by  detecting

the  multiple  change-point  in  the  non-cumulative  FMD’s  slope

series.  The  segment  slope  at  magnitude m in  FMD  is  defined  as

equation:

s (m) =
log(N (m+∆m))− log(N (m))

∆m
, (7)

where N is the number of events; Δm is the size of magnitude bin.

After  each  segment  slope  at  consecutive  magnitudes  was  calcu-

lated,  the median was subtracted from this  slope series.  The Wil-

coxon-Mann-Whitney (WMW) test (Mann and Whitney, 1947; Wil-

coxon,  1945)  was  then  applied  to  find  a  notable  and  stable

change point. These two steps are done iteratively, and the mag-

nitude  corresponding  to  the  main  change  in  the  median  of  the
slope  series  is  found,  which  is  the  output MC value.  The  detailed
algorithm  and  corresponding  program  is  provided  in Amorese
(2007).

All the programs implementing these five methods can be found
in  the  package  ZMAP  (Wiemer,  2001).  Our  results  were  obtained
from  this  package,  which  is  used  also  by  other  scholars,  such  as
Woessner and Wiemer (2005).

3.2  The Uncertainty for MC and b-value Estimation
The real catalogs are generated following a certain probability dis-
tribution. We assume that the FMD of a catalog can represent its
real  probability  distribution,  while  some  random  fluctuations  are
inevitable. To assess the influence of these fluctuations, or the reli-
ability of the results, we calculate MC and b-values and their uncer-
tainties by these steps:

We  use  a  Monte  Carlo  approximation  of  the  bootstrap  method
(Efron, 1979), which is to draw, with replacement from the origin-
al catalog, a certain size bootstrap sample. The sampling proced-
ure is repeated several hundreds of times, and we estimate MC for
each  bootstrap  sample.  The  mean  value  of  these MC is  the  final
result  for MC estimation,  and its  standard deviation gives the un-
certainty.  The corresponding b-value is  estimated by MLE via the
equation (2),  with the uncertainty  estimated by Shi  YL and Bolt’s
(1982) criteria (equation (5)).

3.3  Generation of Synthetic Catalogs
In real catalogs, we do not know the true MC.  In order to find the
accuracy  of  each  method,  we  can  take  advantage  of  synthetic
tests, where we can set the “true” value of MC.

The  model  introduced  by Ogata  and  Katsura’s  (1993) (abbrevi-
ated  as  OK1993  hereafter)  was  chosen  as  the  basis  for  synthetic
catalog generation. OK1993 models the detectability of station by
normal  CDF,  following  equation  (10).  The  final  observed  mag-
nitude  frequency  intensity  (equation  (8))  is  given  by  multiplica-
tion  of  the  detection  rate  probability  and  the  real  intensity  from
the G-R law (equation (9)).

λ (m) = λ0 (m)q (m) , (8)

λ0 (m|β) = exp(−βm) , (9)

q (x|µ,σ) =
∫ x

−∞

1
√

2πσ
exp

(
−(x−µ)2

2σ2

)
dx. (10)

The difference between the OK1993 model and the EMR method
lies  in  the  fact  that  no  separation  of  complete  and  incomplete
parts is made. This avoids introduction of a discontinuous point in
FMD,  which  is  unreasonable  physically.  The  magnitude  of  each
event  is  generated  stochastically  by  the  rejection  method
(Zhuang  JC  and  Touati,  2015).  The  rejection  method  is  a  basic
technique  for  simulating  a  random  variable  from  a  known  distri-
bution  (equation  (8)  in  our  case).  The  brief  procedure  is,  first,  to
generate  a  random number,  and then determine whether  to  ad-
opt this number, according to the known probability density func-
tion.

The  estimation  of  theoretical MC value  follows Huang  YL  et  al.
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(2016). Theoretical MC is estimated as the magnitude above which

one  event  in  every  500  events  is  expected  to  be  unrecorded.  To

be specific, it is the resulting M value when N equals 500 in equa-

tion (11), where q(m) has the same definition as in equation (10).

N ×
{∫ ∞

M

[
1−q (m)

]
dm

}
= 1. (11)

The detailed discussion for choosing the criteria of theoretical MC

is presented in Huang YL et al. (2016).

3.4  Dependence on Sample Size
For  real  catalogs,  we  used  the  bootstrap  method  mentioned

above to get MC and b-values (with their uncertainties) under dif-

ferent  sampling  size.  This  is  done  by  changing  the  size  of  boot-

strap samples to get catalogs of different volumes of events that

nevertheless come from the same FMD.

This  method  will  leave  or  even  magnify  a  certain  pattern  in  the

FMD to bootstrap samples, which can cause systematic deviation

in the final result. Thus, in tests on synthetic catalogs, we tried two

different approaches. One is to generate catalogs of the same size

as the corresponding real catalogs, then repeat the same proced-

ure as to the real catalogs; the other is to generate directly differ-

ent sizes of catalogs. We tested the difference between these two

approaches.

In generating synthetic catalogs, we cite the results from Mignan

and Woessner (2012), who used the OK1993 model to fit the data-

set in W&W2005; fitted parameters are presented.

3.5  Tolerance to Heterogeneity
The  bootstrap  method  mentioned  before  is  used  to  select  ran-

domly a certain number of events from both subsets. Considering

the stochastic fluctuation, selected events may come mainly from

large or small magnitude events of one subset, and thus the final

results of MC to mixing ratio will not change monotonously. To at-

tenuate  this  effect,  for  each  mixing  ratio  the  procedure  was  re-

peated  five  times  and  the  resulting MC values  were  averaged.

Apart from consuming an unreasonable amount of time, increas-

ing  uncertainty  is  an  important  reason  why  we  do  not  repeat

more than five times.

3.6  Detectability of Small Missed Events
We used a sliding window approach, calculating MC for events in

the moving ‘window’. A relation between MC and starting index is

plotted to see whether the MC algorithms can detect the missing

of small events in aftershock sequences, and to compare the res-
ults to that of the ‘visual inspection method’.

4.  Results

4.1  Problems Found in Reproducing the Results of

W&W2005 and Relative Modification in Programs
Before conducting our  tests,  we tried to reproduce the results  of

W&W2005 for inspection of the programs and data sets we used.

We  found  that  the  MBS  method  gave  much  larger  results  than

W&W2005 for the four catalogs we used, as shown in Table 2. We
then  plotted b-value  in  respect  to  Mco  for  the  NCSN  catalog.

Though  a  ‘plateau’  is  found  when  Mco  equals  about  1.4,  the b-

value uncertainty is too big by Shi and Bolt’s (1982) criteria, so the

b-value is thus not considered stable (Fig. 2a).

In  W&W2005,  the  author  pointed out  that  ‘window length’  has  a

strong influence on the  result,  and suggested that  it  be  set  to  5.

Our tests show that too short a ‘window’, such as 2 or 3, will lead

to  large  uncertainty,  which  means  poor  computational  stability.
We also found in the code that average b-value is estimated from

b-values for magnitudes from a certain MCO forward (equation 4),

which will give too much weight to b-values for larger MCO.

So we tried to change the starting point,  and finally found that a

–0.1  shift  will  give  better  results  (following  equation  (12)).  Modi-

fied results are shown in Figure 2 and Table 2.

bave =
∑MCO+win_M−0.1

MCO−0.1
b (MCO)∆m/

(
win_M+0.1

)
. (12)

Table 2.   MC estimation by MBS method for four real catalogs

ECOS NCSN NIED CMT

ORIGIN 1.64±0.12 2.24±0.33 1.98±0.11 5.93±0.34

MODIFIED 1.55±0.12 1.47±0.37 1.91±0.07 5.46±0.16

W&W2005 1.64±0.11 1.44±0.12 1.44±0.12 5.94±0.34

CORSSA 1.53±0.16 1.48±0.10 1.97±0.10 5.80±0.09

(a) Origin
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Figure 2.   The relationship between b-value and cut-off magnitude for NCSN catalog, where the average b-value is estimated by (a) Original

method in equation (4), and (b) modified method in equation (12). b(MCO) is the b-value corresponding to cut-off magnitude MCO; b(ave) is the

averaged b-value calculated by equation (4) or (12); db is the uncertainty of estimated b-value.
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4.2  Dependence on Sample Size

4.2.1  Resample from real catalog
Applying  the  bootstrap  method  mentioned  before  to  real  cata-
logs,  setting  the  sample  size N of  the  bootstrap  samples  to  100,
200, 500, 1000, 5000, 10000, 100000, respectively, the resulting re-
lation between MC and b-value to N is shown in Figure 3. We find
in the four real catalogs that, for small N, the MBS method gives a
substantially  lower MC estimate  than  other  methods  and  the b-
value  is  also  seriously  under-estimated;  conversely,  when N is
large,  the  resulting MC and b-values  are  much  larger  than  from
other methods. This shows that the MBS method is sensitive to N.
In  contrast,  results  from  the  MAXC  method  are  quite  stable,  but
are  always  the  lowest  of  all  five  methods.  Estimation  of  EMR  will

decrease  slightly  with  ascending N,  and  will  finally  be  similar  to

that of the MAXC method, which tends to underestimate MC; thus

a  modification  value  of  about  0.2  is  needed  (Huang  et  al.,  2016).

The GFT and MBASS methods have stable performance in this part

of the test, but give estimates that are smaller than those of MBS.

4.2.2  Resample from synthetic catalogs

As a comparison to last part,  synthetic catalogs of the same sizes

as the original ones were processed in the same way. The FMD of

synthetic  catalogs  and  their  theoretical MC values  are  shown  in

Figure  4,  and  the  results  are  shown  in Figure  5.  It  is  worth  men-

tion  that  additional  treatment  needs  to  be  done  for  the  ‘tail’  of

FMD,  since  large  earthquakes  rarely  happen  and  tend  to  deviate
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Figure 3.   Relationship between MC, b-value and events number N for four real catalogs, using bootstrap method.
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from the G-R law. This happens in the synthetic CMT catalog. But
we keep the original one since this problem would not affect our
main conclusion.

We find the  same phenomenon of  stability  for  the  MBS method;
but for large N, b-value estimation is  not substantially as large as
for MC.  The difference exists for the GFT method when MC is over
estimated for large N,  but has no influence on b-value. Generally,
all methods tend to under-estimate MC compared to the theoret-
ical MC value  estimated  by  Yilei  Huang’s  criteria  (Huang  et  al.,
2016).

4.2.3  Generating direct catalogs of different sample sizes
The results  are  shown in Figure  6.  Note that  all  five  methods are
applied to the same catalogs, so the statistical fluctuations in cre-
ating synthetic catalogs are the same for all methods. The general
patterns  are  the  same  for  the  last  part  of  the  test,  but  MBS  per-
forms more stable than other methods.

4.3  Tolerance to Spatial Heterogeneity
We  select  from Schorlemmer  and  Woessner  (2008) two  polygon
sub regions of significantly different MC: (35.8°, 36.35°N)×(117.88°,
118.4°W) and (33.35°,  33.7°N)×(116.55°,  119.95°W),  whose sample
size  are  similar  (6337  and  6471  events);  their  FMD  and  EMR  fit-
tings  are  plotted  in Figure  7.  Note  that  the  first  subset  has  a  flat
non-cumulative  FMD,  which is  caused by heterogeneity  (Wiemer
and Wyss, 2000; Mignan et al., 2011).

The mixing ratio of the two sub catalogs changes from 0 to 1, and
the sizes of mixed catalogs are set to 500, 1000, 3000, 5000, 7000,
10000, 15000, 20000, respectively. Affected by heterogeneity, the
goodness-of-fit  criterion for  the GFT method is  set  to  90%;  other
side,  the  method  would  be  numerically  unstable.  The  results  are

shown in Figure 8.

More fluctuation exists when N is no more than 1000; below that
threshold,  computation  is  not  stable.  For  samples  large  enough,
results  for  the  five  methods  are  divided  into  three  groups:  the
MAXC  and  MBASS  methods  provide  the  lower  estimations;  they
rise  and  become  closer  with  increasing  ratios;  the  GFT  and  EMR
methods  lead  to  a  median  and  relatively  stable  estimation;  the
MBS method leads to the largest fluctuations, and even the down-
ward trend is ambiguous.

4.4  Detectability of Small Missed Events

4.4.1  Aftershock sequence for Wenchuan and Fukuoka

earthquake
This  set  of  aftershock  sequences  contain  a  small  number  of
events.  The  results  are  shown  in Figure  9.  For  the  Wenchuan
earthquake, since the sample size is small, MBS is unstable and the
criterion for the GFT method is set to 90%. However, the visual in-
spection  estimates  the  ‘starting  time’  to  be  40,  which  is  not  big
enough for window length and would lead to an unstable estima-
tion.  So  we  choose  a  window  length  considering  the  tradeoff
between  window  length  and  numerical  stability.  If  the MC al-
gorithms work, the resulting MC value should decrease with a time
lapse. But as we can see in the figure, the usable MAXC, GFT and
MBASS  methods  cannot  reflect  the  missing  of  small  events.  The
same phenomenon appears in the Fukuoka earthquake results.

4.4.2  Aftershock sequence for Miyaji and Landers earthquake
When a catalog contains  a  large volume of  events,  a  longer  win-
dow length can be applied. The results are shown in Figure 10. For
both  of  these  earthquakes,  the  MBASS  method  gives  a  large MC

with  strong  fluctuations,  so  for  the  Landers  aftershock  sequence
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Figure 4.   FMD of four synthetic catalogs. The vertical line indicates the theoretical MC values estimated by the method in Huang et al. (2016).
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we plotted results only for the other three methods. It can be seen

in  this  part  of  the  test  that MC estimated  by  the  MAXC,  GFT  and

MBS methods decreases to a rather stable value at the index close

to  that  estimated  by  visual  inspection.  This  means  that  they  can

detect the missing of small events.

5.  Discussion and Conclusions
In MC estimation,  all  methods  except  the  MBS  method  can  give

reasonable  estimates  when  applied  to  data  from  small  sample

catalogs. When N is large, the MBS method will lead to a large MC

in  tests  based  on  real  catalogs,  but  not  when  used  on  synthetic

catalogs  of  different  sample  sizes.  This  fact  reveals  some  kind  of

instability  of  the  MBS  method,  but  also  shows  that  controlling

bootstrap  size  is  not  a  perfect  way  to  study  a  method’s  depend-

ence  on  sample  size.  Perhaps  a  systematic  error  is  magnified  in

the  process  of  resampling,  by  some  ‘bad’  pattern.  In  synthetic

tests,  the GFT method overestimates MC significantly,  which may

result  from  the  method  used  in  creating  synthetic  catalogs.

However,  it  is  possible  that  the  GFT  method  does  lead  to  a  sub-

stantially larger MC value when the sample size is large.

In terms of b-value estimation,  though MC values can be signific-

antly  overestimated in synthetic  tests, b-values are not.  This  may

be  explained  if b-value  as  function  of  cutoff  magnitude  for  syn-

thetic  catalogs  has  a  long  ‘plateau’,  and  even  a  large MC estima-
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Figure 5.   Relationship between MC, b-value and sample size N for four synthetic catalogs, using bootstrap method. The horizontal line indicates

the theoretical MC estimations by the method in Huang et al. (2016).
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Figure 6.   Relationship between MC, b-value and sample size N for four synthetic catalogs. Catalogs with different sizes was created directly. The

horizontal line indicates the theoretical MC estimations by the method in Huang et al. (2016).
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Figure 7.   FMD and EMR fitting results for two sub regions in Schorlemmer and Woessner (2008) from SCSN catalog.
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tion  stays  in  this  ‘plateau’.  These  observations  reflect  the  over-

idealization  of  synthetic  catalogs;  some  ‘flaw’  in  real  catalogs  is

not being modeled. Thus, for b-value estimation, we suggest that

the figure of b-value to cutoff magnitude should be inspected to

get a visual impression.

Heterogeneity exists in our first selected subset. Results show that

when the first subset takes a small ratio in the mixed catalog, MC

estimated  by  the  MAXC  method  will  be  significantly  lower  than

for the other four methods, which reveals a poor tolerance of het-

erogeneity by the MAXC method. Though MC generally decreases

by the MBASS method, fluctuations of the curve show an incapab-

ility of MBASS to reflect changes of MC when heterogeneity exists.

On another hand, the conclusion of Mignan et al. (2011) is verified,

since the separation between the results of MAXC and MBASS de-

creases when the ratio of the second subset increases. Results for

the MBS method show even stronger fluctuation, and the trend of

MC decreasing can hardly be seen. This means that MC estimation

by the MBS method is untrustworthy for heterogeneous catalogs.

GFT and EMR perform better in this test; the results show a linear

change of MC with increasing mixing ratio.  This property enables

these  methods  to  be  applied  to  studies  of MC mapping,  as  has

been  done  by  the  EMR  method  in Schorlemmer  and  Woessner

(2008).

In tests for aftershock sequences ranging from a few hundreds of
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Figure 8.   Relationship between MC and mixing rate for different sizes of mixed catalogs. ‘vRate’ is the ratio of subcatalog2 to the mixed catalog.
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Figure 9.   FMD, aftershock sequence and the relation between MC and events’ sequential index for Wenchuan and Fukuoka aftershock.
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Figure 10.   FMD, aftershock sequence and the relation between MC and events’ sequential index for Miyagi and Landers aftershock.
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events to thousands of events, the ‘visual inspection method’ can
always  be  effectively  applied.  The  MAXC,  GFT  and  MBS  methods
can detect missed small events only when the sample size is large;
the  MBASS  method  does  not  have  this  property.  Since  the  EMR
method needs a whole range of magnitudes to fit, it is not valid in
this  condition,  where the incomplete part  of  FMD is  discarded in
extracting aftershock sequences.

The  properties  of  the  five  methods  are  summarized  in Table  3,
based on the discussion above.
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