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Abstract: Solar energy is the primary driving force behind a planet’s climate system, and surface albedo plays a key role in determining
the energy budget of the planet. Coupling the Snow, Ice, and Aerosol Radiation (SNICAR) with the Laboratoire de Météorologie
Dynamique (LMD) Mars General Circulation Model (MGCM) to create a new coupled model leads to an approximately 4% drop in the net
CO2 ice deposition on Mars. Newly simulated surface albedo affects the concentration of gaseous species in the Martian atmosphere
(condensation-sublimation cycle). The new set-up also impacts the solar energy available in the atmosphere. These two effects together
lead to subsequent and significant changes in other chemical species in the Martian atmosphere. Compared with results of the MGCM
model alone, in the new coupled model CO2 (gas) and O3 show a drop of about 1.17% and 8.59% in their respective concentrations, while
H2O (vapor) and CO show an increase of about 13.63% and 0.56% in their respective concentrations. Among trace species, OH shows a
maximum increase of about 29.44%, while the maximum drop of 11.5% is observed in the O concentration. Photochemically neutral
species such as Ar and N2 remain unaffected by the albedo changes.
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1.  Introduction
Reactions that are initiated by the absorption of a photon of light
by a chemical species are known as photochemical reactions. CO2

is the major component in the Martian atmosphere, with a mixing
ratio  of  95%  (Franz  et  al.,  2017),  derived  using  the  most  recent
data from the Curiosity Mars rover. The primary driver of the pho-
tochemistry  of  the  Mars  atmosphere  is  the  photo-dissociation  of
its  dominant  gas,  CO2, which  is  continuously  photolyzed  produ-
cing CO and O, and subsequently O2. Other atmospheric compon-
ents  (such  as  O3,  H2O,  CO,  and  dust)  also  play  important  roles  in
the photochemistry and ion chemistry of the Mars atmosphere.

CO  is  produced  mainly  by  the  photolysis  of  CO2 but,  due  to  its
long  lifetime  (~  3.17  Earth  years)  (González-Galindo  et  al.,  2005),
CO  acts  like  a  dynamical  tracer.  The  seasonal  variation  of  CO  is
connected  primarily  with  the  condensation  of  CO2 and the  dy-
namical  transport  (Krasnopolsky,  2015).  CO  was  detected  for  the
first  time  from  high-resolution  Fourier  transform  spectra  by Ka-
plan  et  al.  (1969) and  the  mixing  ratio  retrieved  was  800±300
ppm.  Retrievals  from  recent  spacecraft  measurements,  such  as
CRISM  onboard  MRO,  PFS  onboard  MEX,  and  OMEGA  onboard
MEX,  show  an  approximate  CO  mixing  ratio  of  700  ppm  in  the

Martian atmosphere (Franz et al.,  2015, 2017). The opposite reac-

tion, i.e., CO+O+M→CO2+M is very slow and is rotationally forbid-

den  (Atreya  and  Gu  ZG,  1995). McElroy  and  Donahue  (1972) first

argued that CO is  re-oxidized by OH,  suggesting the presence of

OH molecules produced by photolysis of water vapor in Mars’s at-

mosphere. Such a low abundance of CO shows the stability of the
Martian atmosphere.

Water  vapor,  the  only  source  of  the  catalytic  species  HOx in  the

Martian  atmosphere,  is  one  of  the  atmosphere’s  most  variable

trace species and is also responsible for the atmosphere’s stability.

The seasonal  cycle of  water vapor is  driven by condensation and

sublimation  of  the  polar  frost  (Barker  et  al.,  1970). The  first  de-

tailed  knowledge  of  Martian  water  vapor  was  obtained  from  the

Mars  Atmospheric  Water  Detector  (MAWD)  instrument  onboard

the Viking orbiter (Farmer et al., 1977; Jakosky and Farmer, 1982).

Global and  seasonal  variation  of  water  vapor  shows  a  net  trans-

port of water vapor from the southern polar region to the north-

ern polar region during a Martian year (Farmer and Doms, 1979).

This extra water vapor corresponds to 1–2 mg/cm2 of the depos-

ited ice on the surface.  Thermal  Emission Spectrometer (TES)  ob-

servations  predicted a  lower  water  vapor  gradient  from south to

north as compared to MAWD retrievals (Smith,  2002, 2004; Pank-

ine et al., 2010).

Also playing an important  role  in  the photochemistry  and stabil-

ity of the Martian atmosphere is ozone. The ultraviolet (UV) spec-
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trometer onboard the Mariner 7 flyby detected ozone for the first-
time using absorptions of the Hartley band (centered at 255 nm)
(Barth and Hord,  1971; Modak et  al.,  2019).  Global  distribution of
Martian ozone was reported from remote sensing observations by
Perrier  et  al.  (2006) and Clancy et  al.  (2016). Ozone was underes-
timated  in  early  modeling  studies  (Nair  et  al.,  1994).  However,
Lefèvre et al. (2004) achieved better agreement with observations
after establishing, and incorporating, a complete water cycle. Vari-
ous past studies have shown that ozone is anti-correlated with the
abundance of water vapor (Barth et al.,  1973; Lefèvre et al.,  2004;
Fedorova et al., 2006; Fast et al., 2006; Clancy et al., 2016; Willame
et  al.,  2017; Modak  et  al.,  2019).  Water  vapor  is  abundant  on  the
northern polar  cap as  compared to  the southern polar  cap.  O3 is
produced primarily by the dissociation of CO2 and O2 (which pro-
duces  the  O atom)  and combination with  O2 to  produce O3.  The
photo-dissociation occurs only in the sunlit areas, and O3 is trans-
ported over dark regions. The degree of anti-correlation between
O3 and  water  vapor  varies  from  region  to  region  (Lefèvre  et  al.,
2004).  In  general,  at  all  locations  O3 is  at  its  maximum  during
winter  and  minimum  during  summer,  due  to  its  anti-correlation
with water vapor (Barth et al., 1973).

Table  1 lists the atmospheric  mixing ratios  of  some selected ma-
jor  species  in  the  Martian  atmosphere  (Mumma  et  al.,  2009; En-
crenaz  et  al.,  2011; Franz  et  al.,  2015, 2017; McConnochie  et  al.,
2018).  The  concentration  of  trace  gases  such  as  H2O  and  O3 has
high variability due to seasonal dependence. Table 2 lists four sea-
sons  on  Mars  for  both  hemispheres  with  solar  longitude  (Ls)
ranges (Cantor et al., 2001).

Surface  albedo  controls  the  amount  of  solar  energy  reflected  or
absorbed by a planet’s surface and has a significant impact on any
planet’s  energy  budget.  Since  solar  energy  is  the  key  to  initiate
(and continue)  photochemical  reactions,  any  change  in  solar  en-
ergy flux  will  have  a  direct  impact  on  atmospheric  photochem-

istry.  In  this  work,  I  have quantified the impact  of  surface albedo
on the mass budget of various photochemical species in the Mar-
tian atmosphere by coupling the Laboratoire de Météorologie Dy-
namique (LMD) Mars General Circulation Model (hereafter MGCM)
to the extended Snow, Ice, and Aerosol Radiation (SNICAR) model
(Flanner et al., 2007, 2009; Singh and Flanner, 2016). I assess glob-
al and  seasonal  changes  in  the  mass  budget  of  various  photo-
chemical species using a mean solar insolation scenario. This work
is focused on understanding the change in the mass budget due
to albedo changes,  so  initial  solar  insolation would not  have any
impact on the calculations. All the changes reported in this paper
are with respect to the uncoupled MGCM unless stated otherwise.

2.  Model Description & Methodology

The MGCM is  a  3-D General  Circulation Model  that  simulates  the
temporal evolution  of  the  different  physical  processes  that  con-
trol or  describe the meteorology and climate that  covers  the en-
tire Martian atmosphere. Along with various schemes such as the
CO2 (Forget  et  al.,  1998; 1999),  water  (Navarro  et  al.,  2014),  and
dust (Madeleine et al., 2011) cycles, the MGCM (Pottier et al., 2017;
Singh et al.,  2018) also includes a state-of-the-art gas-phase pho-
tochemical module (Lefèvre et al.,  2004) to provide a realistic de-
scription of the concentrations and variations of various species in
the Martian atmosphere.

SNICAR utilizes the multiple scattering, multi-layer two-stream ra-
diative  approximation  described  by Toon  et  al.  (1989),  with  the
delta-hemispheric  mean  approximation.  The  current  version  of
SNICAR utilizes 480 bands spanning 0.2–5.0 μm at 10 nm spectral
resolution  to  produce  a  directional-hemispherical  albedo  (Singh
and  Flanner,  2016). Singh  et  al.  (2018) prognostically  determine
snow (both H2O and CO2) albedos interactively within the MGCM
(integrated with MGCM) using the framework of Singh and Flan-
ner (2016).

First,  I  determine  the  total  mixing  concentration  of  each  species
using  the  MGCM.  Next,  I  convert  these  concentrations  into  the
total  mass  of  each  particular  species  using  its  molar  mass.  After
that, I couple SNICAR with MGCM (S-MGCM) using the framework
of Singh et al.  (2018) to determine new concentrations, and total
mass.  Finally,  I  determine  the  change  in  the  respective  chemical
species by subtracting S-MGCM values from MGCM values.

3.  Results and Discussion
Singh et al. (2018) showed changes in CO2 ice deposition, surface
pressure,  and  temperature  after  the  integration  of  SNICAR  with
MGCM.  Due  to  a  higher  simulated  surface  albedo  with  SNICAR,
the  net  CO2 ice  deposition  decreases  by  about  4%  (Singh  et  al.,
2018). This  leads  to  subsequent  changes  in  other  chemical  spe-
cies due  to  various  photochemical  interactions  within  the  atmo-
sphere. Figure  1 shows the  change  in  the  broadband  surface  al-
bedo (Band-averaged values are weighted with solar spectral irra-
diance measurements from Labs and Neckel (1968)) due to the in-
tegration  of  SNICAR  with  MGCM.  The  most  significant  change  in
albedo is  observed in the southern hemisphere from Ls =100° to
Ls  =200°.  A  global  map  (Figure  2)  showing  changes  in  surface
temperature  indicates  maximum  impact  during  the  southern

Table 1.   Atmospheric concentration of selected species in the Mar-
tian atmosphere.

Chemical specie Atmospheric concentration

CO2 94.9%

N2 2.79%

Ar 2.08%

O2 0.174%

CO 747 ppm

H2O 0–200 ppm (column averaged)

O3 0.02–0.2 ppm

Table 2.   Distribution of seasons on Mars with solar longitude (Ls)
span.

Ls range (degrees) Northern Hemisphere Southern Hemisphere

0°–90° Spring Fall/Autumn

90°–180° Summer Winter

180°–270° Fall/Autumn Spring

270°–360° Winter Summer
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spring and summer seasons (Ls =200° to Ls =300°). The change in

surface  albedo  causes  a  reduction  in  surface  temperature  values

(global  average)  of  about  1.7  K  (0.87  %)  (Singh  et  al.,  2018). Sur-

face  temperature  plays  a  significant  role  in  determining  reaction

coefficients. However, due to a very small change in surface tem-

perature, the reaction coefficients are not significantly affected in

our analysis.

Table  3 lists changes  in  concentrations  of  various  chemical  spe-

cies due  to  the  effect  of  revised  albedo.  The  positive  sign  indic-

ates  the  decrement  in  the  concentration  of  respective  species,

and the negative sign indicates the increment of concentration of

respective  species  with  respect  to  MGCM.  The  changes  in  major

species  (CO2,  CO  &  O2)  are  relatively  small,  while  the  trace  gases

(H2O & O3) show more significant changes. This happens because

a small  change  in  dynamics  would  significantly  impact  the  con-

centration of minor species. Inert gases like N2 and Ar do not show

any  significant  change  in  their  concentrations  due  to  their  very

little or no participation in Martian photochemistry.

Among  major  atmospheric  constituents,  carbon  dioxide  and

ozone show a drop in their concentrations while water vapor, car-

bon  monoxide,  and  oxygen  show  an  increase  in  their  respective

concentrations.  Water  vapor  shows  the  maximum  change  in  the

total mass of the species,  followed by ozone and carbon dioxide.

The  photolysis  of  water  vapor  provides  odd  hydrogen  radicals

(HOx) which are responsible for the catalytic loss of O3 (Nair et al.,

1994). As ozone is anti-correlated with the abundance of water va-

por,  therefore  increase  in  water  vapor  content  decreases  the

ozone content with the change in albedo. O3 is also important in

determining  the  habitability  of  Mars,  as  it  modulates  the  surface

UV flux.

Figure 3 shows the annual variation of global average concentra-

tions of four major species (CO2, CO, O3 & H2O (vapor)) in the Mar-

tian atmosphere. CO2 and O3 observe a drop in concentration dur-

ing  the  southern  spring  season,  while  CO  and  H2O  (vapor)  show

an increase in concentration mostly during northern summer. The

amount  of  CO  and  H2O  (vapor)  increases  during  late  southern

winter  and  extends  up  to  early  southern  spring,  which  coincides

with albedo change in S-MGCM simulations around the same time

(Figure  1).  Drop  in  the  amounts  of  CO2 and  O3 observe  a  slight

delay starting around early  southern spring and extending up to

mid-spring.  The  delay  is  caused  primarily  by  the  time  taken  by

species to move around and react with other species.

Figure 4 shows the annual variation of longitudinal-averaged con-

centrations of four major species in the Mars atmosphere. Surface

albedo is a strong positive feedback mechanism (e.g., Bony et al.,

2006; Winton, 2006; Randall et al., 2007; Soden et al., 2008; Shell et

al.,  2008; Flato  et  al.,  2013; Singh  et  al.,  2015)  that  controls  the

amount  of  solar  energy  available  to  be  utilized  by  the  planetary

surface and atmosphere. As albedo increases, the surface reflects

more  solar  energy  back  into  space.  With  lower  energy  available,

both surface and atmosphere become colder and trap more gases

via  condensation.  CO2,  being  the  most  dominant  species,  shows

signs  of  changes  in  its  respective  concentration  over  almost  the

entire  globe  during  the  southern  spring  season.  CO  is  produced

primarily  by  the  photolysis  of  CO2 from  solar  energy.  Therefore,

Table 3.   Net change in total global average mass of chemical
species in the Martian atmosphere. Positive change indicates the fall,
and negative change indicates the rise in respective species with
respect to MGCM.

Chemical Species Change (%)

CO2 (gas) 1.17

H2O (vapor) –13.63

O3 8.59

CO –0.56

O2 –0.23

O 11.5

O(1D) 0.78

H2 –1.48

H –12.97

OH –29.44

HO2 6.14

H2O2 –4.77

Ar 0

N2 0
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Figure 1.   Global map (longitudinally averaged) of albedo change

determined by subtracting S-MGCM albedo values from MGCM

albedo values.
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Figure 2.   Global map (longitudinally averaged) of surface

temperature change determined by subtracting S-MGCM surface

temperature from MGCM temperature.
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Figure 3.   Global average plots of concentration of major species for one Martian year. Blue line indicates values determined using MGCM

simulations, and green line indicates values determined using S- MGCM simulations.
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Figure 4.   Longitudinally-averaged global maps (difference in concentrations) of four major atmospheric species in the Martian atmosphere. The

difference is determined by subtracting S-MGCM albedo from MGCM albedo values.
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CO  shows  contrasting  changes  in  both  hemispheres  near  late
summer (Northern  Hemisphere)  /  early  spring  (Southern  Hemi-
sphere), which  is  mostly  consistent  with  albedo  changes  ob-
served in S-MGCM.

Since  water  vapor  and  ozone  are  anti-correlated  (Lefèvre  et  al.,
2004; Fedorova  et  al.,  2006; Fast  et  al.,  2006; Clancy  et  al.,  2016;
Willame  et  al.,  2017; Modak  et  al.,  2019),  we  observe  opposite
changes for both species for the most part during the entire year.
Ozone is more abundant in colder regions; water is more abund-
ant  in  warmer  regions  (Lefèvre  et  al.,  2004, Fig.1).  The  latitudinal
anomalies are caused primarily by a relative abundance of certain
species at a certain latitude. Therefore, the changes are more pro-
nounced when the abundance is relatively high.

4.  Conclusions
Surface albedo plays a significant role in managing a planet’s en-
ergy budget. The simulated albedo in the new S-MGCM has an im-
pact  on  the  amount  of  solar  energy  available  in  the  atmosphere
for various gaseous species. The change in surface temperature is
too small to cause any significant change in the chemical reaction
rates. However,  the  revised  surface  albedo  changes  the  concen-
tration of certain atmospheric species by changing the condensa-
tion-sublimation  cycle.  In  this  case,  changes  in  albedo  directly
change  the  amount  of  CO2 available  in  the  atmosphere,  due  to
the lower condensation of CO2 gas into CO2 ice. Changes in both
the  sublimation-condensation  cycle  and  in  solar  energy  impact
chemical reactions, which further impact the other photochemic-
al reactions occurring in the atmosphere, depending on the avail-
ability of other species, and environmental conditions in the vicin-
ity.

Except for Argon and Nitrogen, the new simulated albedo has im-
pacted all other species (either a drop or increase in their net con-
centrations).  Among  major  species,  water  vapor  observes  the
maximum change followed by ozone, carbon dioxide, and carbon
monoxide.  The  concentrations  of  water  vapor  and  ozone  are
highly affected by seasonal changes on Mars, therefore they react
most to the albedo changes caused by the integration of SNICAR
into  the  MGCM.  Trace  species  generally  show  higher  changes  as
compared  to  major  species,  due  to  their  higher  dependency  on
seasons.
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