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Abstract: To infer the internal equilibrium structure of a gaseous planet, especially the equation of state (EOS) and size of its inner core,
requires accurate determination of lower-order zonal gravitational coefficients. Modeling of the gravitational signature associated with
deep zonal circulation depends critically upon reliable subtraction of the dynamical components from totally derived gravitational
coefficients. In the era of the Juno mission and the Grand Finale phase of the Cassini mission, it is timely and necessary to revisit and
examine the so-called ‘Thermal Wind Equation (TWE)’, which has been extensively utilized to diagnose the dynamical parts of the
gravitational fields measured by the two spacecrafts. TWE treats as negligible a few terms in the full equation of balance. However, the
self-gravitational anomaly of the distorted fluid, unlike oblateness effects of solid-body rotation, is not a priori minor and thus should not
be neglected in the name of approximation. Another equation, the ‘Thermal Gravitational Wind Equation (TGWE)’, includes this important
additional term; we compare it with the TWE and show that physically the TGWE models a fundamentally different balance from the TWE
and delivers numerical results considerably different from models based on the TWE. We conclude that the TWE balance cannot be relied
upon to produce realistic convection models. Only after the TGWE balance is obtained can the relative importance of terms be assessed.
The calculations we report here are based on two types of zonal circulations that are produced by realistically possible convections inside
planets, instead of being constructed or assumed.
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1.  Introduction
The Juno  mission  and  the  Grand  Finale  stage  of  the  Cassini  mis-

sion  have  achieved  unprecedentedly  accurate  measurements  of

the  gravitational  fields  of  Jupiter  and  Saturn  (Bolton  et  al.,  2017;

Edgington  and  Spilker,  2016).  It  has  long  been  expected  that

highly accurate gravitation data would greatly improve our know-

ledge  of  internal  states  of  gas  giants  (Stevenson,  1982; Guillot,

2005; Anderson and Schubert, 2007; Nettelmann et al., 2012; Kong

DL et al., 2016a). After data became available (Durante, 2017; Iess

et al.,  2018, 2019),  many efforts have been made to interpret the

measurements in order to ribe the mysterious internal  structures

and equations of state (EOS) of these two giant planets (Miguel et

al., 2016; Militzer et al., 2016; Wahl et al., 2017; Ni DD 2018; Iess et

al., 2019; Debras and Chabrier, 2019; Kong DL et al., 2019). Such an

objective demands a  reliable  knowledge of  the hydrostatic  com-

ponent  of  the  gravitational  fields.  However,  it  should  be  noted

that a spacecraft measures only the total gravitational field, which

includes dynamical  signatures  associated  with  internal  fluid  mo-

tions,  including  zonal  circulations  that  can  substantially  perturb

zonal  gravitational  coefficients.  To  extract  the  main  hydrostatic

component  for  studies  of  internal  structure,  accurately  modeling

the  dynamical  part  becomes  crucial;  otherwise,  uncertainties  in

flow-related  gravitation  can  make  it  difficult  to  distinguish

between different internal models (Wahl et al., 2017; Ni DD, 2019).

The  two  most  important  sources  of  such  uncertainties  are  (1)  an

  
Correspondence to: D. L. Kong, dkong@shao.ac.cn
Received 17 OCT 2019; Accepted 22 NOV 2019.
Accepted article online 03 JAN 2020.
©2020 by Earth and Planetary Physics. 

 
 

http://dx.doi.org/10.26464/epp2020014


unknown deep zonal circulation profile below the cloud-top, and
(2)  how  to  diagnose  accurately  the  distortion  caused  by  a  zonal
circulation.

Jupiter  and  Saturn  are  marked  by  fast  zonal  winds  observed  at
their  cloud-top  (Porco  et  al.,  2003).  It  has  remained  disputable
(Kaspi et al., 2018; Kong DL et al., 2018b) whether such zonal wind
extends deeply into the planetary interiors until being stopped by
magnetic  braking  effects,  or  whether  the  wind  represents  just
very shallow atmospheric dynamics. In the shallow scenario, there
must  be,  beneath  the  zonal  wind  layer,  a  deeper  circulation  of  a
different  profile  but  dynamically  coupled  with  the  upper  jet
stream  (Dowling,  1995; Thomson  and  McIntyre,  2016).  In  either
case,  zonal  flow  exists  in  the  conductivity-low  envelope  of  a
gaseous planet, produced by thermal convection under fast rota-
tion  (Zhang  KK  and  Schubert,  2000; Zhang  KK  and  Liao  X,  2017).
The  fluid  motion  causes  a  density  anomaly  that  further  distorts
the gravitational field. Externally, such a distorted planetary grav-
itational potential can be expanded by

Vg(r, θ) = −
GM
r [1 −

∞

∑
n=2

(Jn + ΔJn) (Rer )n Pn(cosθ)] , r ≥ Re , (1)

G M
Re

in  which  is  the gravitational  constant,  is  the planetary mass,
 is the equatorial radius of the planet. In the spherical polar co-

ordinate  system  (r, θ, φ), r and θ are the  radial  and  angular  co-
ordinates and the origin, r = 0, is set at the center of figure; θ = 0
marks the symmetry axis of rotation. Pn(cos θ), n = 2,  3,  ···  are Le-
gendre  polynomials. Jn are  zonal  gravitational  coefficients  linked
to the hydrostatic equilibrium structure of the planet, under a uni-
form rotation Ω; ∆Jn are dynamical gravitational signatures associ-
ated with  the  internal  zonal  circulation,  either  equatorially  sym-
metric (resulting in ∆J2k, k = 1, 2, ···) or anti-symmetric (resulting in
∆J2k+1, k = 0, 1, 2, ···).

g

In modeling  the  zonal-circulation-related  distortion,  several  au-
thors have employed the so-called Thermal Wind Equation (TWE)
for density ρ, gravity  and pressure p (Kaspi et al., 2018; Iess et al.,
2019; Debras and Chabrier, 2019; Galanti et al., 2019),

2Ωẑ × (ρ0uuu) = −∇p′ + ρ′g0, (2)

ρ0g
′

ρ′g0 ρ0g
′

ρ0g
′

where u is the zonal circulation velocity, Ω is the angular speed of
planetary  rotation,  and  the z-axis  is  parallel  to  the  rotation  axis.
The subscript  0  denotes  the  leading-order  hydrostatic  equilibri-
um variables while the primed variables represent dynamical dis-
tortion.  The  TWE  Equation  (2)  is  an  incomplete  balance  that  has
neglected a few terms in the full equation (to be discussed in the
next section), some of which, such as the geometric non-spherical
effects  caused  by  rotation,  can  indeed  be  regarded, a  priori,  as
negligible. But the self-gravitational anomaly  is not only of a

fundamentally different  mathematical  nature  but  also  is  not  ne-
cessarily small. On one hand, the two terms, namely  and ,

are generally of the same order of magnitude. It is mathematically
valid  to  compare  their  relative  importance  only  by  solving  the
equation that includes both terms. However,  to judge the size of
the  based on the partial balance obtained through the TWE is

highly questionable, e. g. Galanti et al., (2017); Kaspi et al., (2019).
Later  in  this  article,  it  will  be shown that  when zonal  circulations
are not restricted to the shallow outer atmosphere but allowed in-

g′

ρ0g
′

side a significant bulk of interior, the two terms are indeed equally

important numerically.  On the other hand,  from consideration of

the  physics  and  the  actual  measurement  data,  the  gravitational

signature  is the quantity of direct interest. It is inappropriate to

delete  from  the  equation  the  very  term  that  is  supposed  to  be

measured. Last but not least, Kong DL et al.,  (2016b) has demon-

strated  that  even  more  profound  algebraic  differences  result

when the  term is introduced.

ρ0g
′

In this article, modeling the dynamical gravitational signatures of

zonal  circulations  is  discussed.  Adopted  deep  zonal  circulations

are produced by possible rotating thermal convections but not ar-

tificially constructed from cloud-top winds. The significant role of

the self-gravitational anomaly  is discussed and highlighted in

a  clear-cut  manner.  This  important  additional  physics  is  included

in the ‘Thermal Gravitational Wind Equation (TGWE)’ (Zhang KK et

al., 2015), whose name reflects that inclusion; we compare it with

the TWE and demonstrate a large numerical discrepancy between

the  two  approaches  when  they  are  applied  to  the  modeling  of

lower-order zonal gravitational coefficients of gaseous planets.

In what  follows,  the  full  Euler  equation  and  relevant  approxima-

tions are introduced and analyzed in Section 2. Then in Section 3,

two  examples  are  discussed  of  zonal  circulations  that  could  be

produced by realistic rotating thermal convections. The TGWE and

TWE models are directly compared in solving gravitational distor-

tions caused by the flows. Conclusions and discussions appear in

Section 4.

2.  Models and Equations

g

Since  cloud-top  zonal  winds  on  Jupiter  and  Saturn  have  been

fairly steady over decades of observations, and the flows have typ-

ically  been  characterized  by  small  Rossby  number,  the  full  Euler

equation for density ρ,  self-gravity ,  and pressure p can be writ-

ten as

2Ωẑ × (ρuuu) = −∇p + ρg +
Ω2

2
∇∣ẑ × rrr∣2, in D, (3)

p = f(ρ), in D, (4)

g(rrr) = ∇ (∫
D

ρ(̃rrr)dṼ∣rrr − r̃rr∣ ) , in D (5)

0 = ∇ ⋅ (ρuuu) , in D, (6)

p = 0, on ∂D, (7)

Constant = ∫
D

ρ(̃rrr)dṼ∣rrr − r̃rr∣ +
Ω2

2
∣ẑ × rrr∣2, on ∂D. (8)

D
∂D

ε = 3Ω2

4πGρ̄
ρ̄

∣uuu∣ < O (100 m/s) ≪ ΩRe

Precisely speaking, the domain  is essentially non-spherical. The

planetary outer level  is an equipotential surface, described by

Equation  (8),  whose  departure  from  sphericity  depends  on  the

EOS  Equation  (4)  and  a  small  rotation  parameter  in

which  is  the  mean density  of  the  planet.  Because typical  zonal

flow  speed  is  small  relative  to  the  solid-body  rotation,  namely

,  for  both  Jupiter  and  Saturn,  Equations

(3)–(8) can be analyzed via a perturbation approach

ρ = ρ0 + ρ′, (9)
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g = g0 + g′, (10)

p = p0 + p′, (11)

uuu

where the subscript 0 denotes variables in the leading order of hy-
drostatic  equilibrium  under  the  solid-body  rotation,  and  the
primed  variables  are  dynamical  distortions  caused  by  the  zonal
circulation .  The  leading  order  problem,  though  not  of  our
primary concern in this article, needs to be explained, about a few
important approximations that are carried to the next order. Sub-
stitution  of  Equations  (9)–(11)  into  Equations  (3)–(8)  yields  the
equilibrium equations free from flow distortion,

0 = −∇p0 + ρ0g0 +
Ω2

2
∇∣ẑ × rrr∣2, in D (12)

p0 = f(ρ0), in D (13)

g0(r) = ∇ (∫
D

ρ0 (̃rrr)dṼ∣rrr − r̃rr∣ ) , in D (14)

p0 = 0, on ∂D, (15)

Constant = ∫
D

ρ(̃rrr)dṼ∣rrr − r̃rr∣ +
Ω2

2
∣ẑ × rrr∣2, on ∂D. (16)

D

Ω2

2
∇∣ẑ × rrr∣2

ε ∼ O (10−2)
D

Self-consistently  solving  Equations  (12)–(16)  and  corresponding
domain  is numerically complicated (Hubbard 2013; Kong DL et
al.,  2015a; Nettlemann,  2017).  However,  in  this  study,  our  aim  is
merely to compare TWE and TGWE in the next order problem, un-
der  the  assumption  that  the  rotational  effects  resulting  from  the

centrifugal  force  are  neglected  for  two  reasons:  first,

the rotational parameter  is generally small for Jupiter

and Saturn; second, departure from spherical symmetry is an a pri-
ori known effect that is common for both TWE and TGWE. There-
fore, the domain  is approximated by a sphere whose radius R is
the  mean  radius  of  the  planet;  hence  all  leading-order  variables
are functions of  radius r only.  Another  approximation involved is
the effective polytropic EOS adopted as

p0 = Kρ2
0

for Equation (13), which has been used in several previous studies
of gaseous planets (Hubbard, 1999; Kong DL et al., 2015b). In real-
ity,  the physical  EOS of  a  giant  planet  can be rather  complicated
(Militzer et al., 2016). However, an effective polytropic EOS can al-
ways  be  found  to  best  approximate  the  true  EOS,  following  the
polytropic  equilibrium  condition  discussed  in Chandrasekhar,
(1939).  The  effective  polytropic  index  for  Jupiter  has  been  found
to be very close to unity (Horedt, 2006). Under the two approxim-
ations, Equations (12)–(16) adopt the solutions

ρ0 = ρc
sinξ
ξ

, 0 ≤ ξ ≤ π, (17)

g0 =
4πLGρc (ξcosξ − sinξ)

ξ2
r̂, (18)

where

ξ = r/L,

L =
√

K
2πG = R

π ,

ρc = M/(4π2L3).

ρ′ g′The  next  order  problem  for  perturbations  and  is  defined  in

the same spherical domain.

2Ωẑ × (ρ0uuu) = −∇p′ + ρ′g0 + ρ0g
′
, (19)

g′(rrr) = ∇ (∫
D

ρ′ (̃rrr)dṼ∣rrr − r̃rr∣ ) . (20)

Note that it can be clearly seen that∣ρ′g0∣ ∼ ∣ρ0g
′∣ ∼ O(ρ0ρ

′).
ρ0g

′

g′

ϕ̂ ⋅ ∇×

uuu = U(r, θ)ϕ̂

The  small  deviation  of  the  polytropic  EOS  from  the  physical  EOS

will only incur a second-order effect in Equation (19) and hence is

neglected.  Generally,  there is  no any a priori reason that the 

term  should  be  small  before  the  complete  equations,  Equations

(19)–(20), are  solved,  unless  under  some  very  special  circum-

stances  when  is  not  concerned  or  the  equations  are  solved

within  a  given very  shallow layer  of  atmosphere.  Applying 

to  both  sides  of  Equation  (19),  considering  the  zonal  flow  in  the

form of , we end up with the so-called ‘Thermal-Gravit-

ational Wind Equation’,

2Ω ∫ θ

π/2
[cosθ̃

∂
∂r

−
sinθ̃
r

∂
∂θ̃

] (ρ0U)dθ̃
=
g0(r)
r ρ′(r, θ) − 2πG

r
dρ0

dr
∫ π

0
∫ R

0

r̃2sinθ̃ρ′ (̃r, θ̃)∣rrr − r̃rr∣ d̃rdθ̃ + C(r), (21)

in  which  the  arbitrary  function C(r) does  not  enter  the  computa-

tion of zonal gravitational coefficients

ΔJn = −
2π
MRn

∫ π

0
∫ R

0
rn+2ρ′Pn(cosθ)sinθdrdθ. (22)

−
2πG
r

dρ0

dr
∫ π

0
∫ R

0

r̃2sinθ̃ρ′ (̃r, θ̃)∣rrr − r̃rr∣ d̃rdθ̃

The TGWE is  algebraically  different  from the TWE because of  the

kernel  term  (Kong  DL  et  al.,

2016b; Zhang  KK  et  al.,  2017a).  A  numerical  scheme  to  solve  the

integral equation has been discussed at length in Zhang KK et al.,

(2015).

3.  Numerical Comparison Between TGWE and TWE
To demonstrate that TGWE and TWE yield major numerical differ-

ences, we have examined two typical types of zonal circulation in-

side  a  planet,  an  equatorially  symmetric  one  and  an  equatorially

anti-symmetric one. The adopted flows are neither constructed ar-

tificially nor extended from cloud-top winds, but are linked phys-

ically to possible thermal convections operating inside a planet. In

both cases, the common parameters are listed in the Table 1.

Table 1.   The physical parameter of a Jupiter-like gaseous planet.

Physical
Parameters Value

G 6.673488 × 10−11 m3 ⋅ kg−1 ⋅ s−2 (Mohr et al. 2012)

R 6.9911 × 107 m

Ω 1.758532411032607 × 10−4 s−1

M 1.8983556 × 1027 kg
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κ α

ν
Ωẑ

−g0rrr rrr

−βrrr

βR4Ω/κ

For illustrative purpose, the convective motion in a sphere is con-
sidered  under  the  regime  of  Boussinesq  approximation,  which  is
still  consistent  with  Equation  (6)  because  all  further  discussions
will be  restrained  within  the  context  of  zonal  circulations.  Con-
sider the  case  of  thermal  convection  in  a  fluid  sphere  with  con-
stant  thermal  diffusivity ,  thermal  expansion  coefficient ,  and
kinematic  viscosity  (Kong DL et  al.,  2018a). The fluid sphere ro-
tates uniformly with constant angular velocity  in the presence
of  its  own gravitational  field ,  where  is  the position vector.
The  whole  sphere  is  heated  by  a  uniform  distribution  of  heat
sources, producing  the  unstable  conducting  temperature  gradi-
ent , β being a  positive constant.  When β is  sufficiently  large,
convective  instability  takes  place  and  drives  fluid  motion  in  the
sphere. Upon employing the radius of the sphere R as the length
scale, Ω-1 as the unit of time, and  as the unit of temperat-

ure fluctuation, the problem of thermal convection is governed by
the dimensionless equations

∂uuu
∂t

+ uuu ⋅ ∇uuu + 2ẑzz × uuu = −∇p + RaΘrrr + Ek∇2uuu, (23)

∇ ⋅ uuu = 0, (24)

(Pr/Ek) (∂Θ
∂t

+ uuu ⋅ ∇Θ) = rrr ⋅ uuu + ∇2Θ, (25)

where  the  three  controlling  dimensionless  parameters,  the
Rayleigh  number,  Ekman  number,  and  Prandtl  number,  are
defined as

Ra =
αβγR4

Ωκ
, Ek = ν

ΩR2
, Pr = ν

κ .

(0 < Ek ≪ 1) (Pr)
The  convection  can  be  subject  to  either  a  no-slip  boundary  or  a
stress-free  boundary  condition.  When,  as  is  true  for  fast-rotating
Jupiter  and  Saturn,  the  Ekman  number  is  asymptotically  small

, the Prandtl number  determines the regime of dy-

namics.

PPPrrr/EEEkkk ≫ 1

3.1  Equatorially Symmetric Differential Rotation in the

Regime 
Pr/Ek ≫ 1

∂/∂ϕ ≈ O(Ek−1/3)
UUU

uuu0

In the cases of , convective motions in the form of spiral-

ing  columnar  rolls  are  marked  by  large  azimuthal  variations
( )  from  the  linear  analysis.  Cylindrical  differential

rotation ,  which  is  equatorially  symmetric,  can  be  generated
from small-scale convection velocity  by the nonlinear Reynolds
stress  at  the onset  of  convection.  Solution of  Equations (23)–(25)
can be expanded by

uuu = Auuu0(r, θ, ϕ, t) + ∣A∣2√
Ek

UUU(r, θ) + . . . , (26)

p = Ap0(r, θ, ϕ, t) + ∣A∣2√
Ek

P(r, θ) + . . . , (27)

Θ = AΘ0(r, θ, ϕ, t) + . . . , (28)

Ra = (Ra)0 + . . . , (29)

A ∣A∣2 ∼ [Ra − (Ra)0]/(Ra)0 ≪ 1

uuu0, p0,Θ0

UUU(r, θ)
where  represents  a  small  amplitude,  with 

.  Substitution  of  Equations  (26)–(29)  into  Equations

(23)–(25)  yields  the  linear  convective  motion  at  onset .
The  nonlinearly  induced  differential  rotation  then  can  be

derived by

2ẑzz × UUU + ∇P − Ek∇2UUU =
√
Ek (uuu0 ⋅ ∇uuu0) , (30)

∇ ⋅ UUU = 0. (31)

ρ′

ΔJ2k, k = 1, 2,⋯

For the equatorially symmetric case of zonal circulation, the differ-
ential rotation of the convection with Ek = 5×10-5 and Pr = 0.025 is
adopted (see  the  Section 19.2.4  of Zhang KK and Liao  X,  (2017)).
Figure  1 depicts  the  zonal  flow  speed  as  a  function  of  distance
from  the  rotation  axis. Table  2 gives  the  polynomial  coefficients
that recover the curve in Figure 1. The equatorially symmetric flow
is  respectively  inserted  into  the  TWE  Equation  (2)  and  the  TGWE
Equation  (21)  to  compute  and associated  gravitational  distor-
tions .  The r−θ grid  discretization  for  numerical
computations (see Zhang KK et al., (2015)) is 200 × 401. Results are
presented in Table 3. As one can immediately see from the com-
parison,  lower  order  zonal  gravitational  coefficients  can  differ  by
O(100%),  as  predicted  by  theoretical  analysis.  The  implication  of
the  contrast  is  that  the  term missing in  the  TWE is  important  for
this particular problem.

3.2  Equatorially Anti-symmetric Torsional Oscillation in
the Regime of Moderate Pr/Ek

Pr/EkFor a moderate value of , both the inertial effect and the vis-
cous  effect  contribute  to  the  rotating  convection.  Equatorially
anti-symmetric zonal  circulation,  in  the  form  of  torsional  oscilla-
tion,  can  be  yielded  in  some  very  special  convection  regimes
(Zhang  KK  et  al.,  2017b). We  adopt  a  simple  but  physically  pos-
sible flow (e. g. the bifurcation A presented and discussed in Kong
DL et al., (2018a))

uuu = ( ΩR
100

) ( r
R
)2

⋅ 2sinθcosθϕ̂. (32)

For  this  zonal  flow, Table  4 presents  the  results  of  gravitational
coefficients  computed  respectively  by  TWE  and  TGWE.  It  can  be
seen  that  again  there  are  significant  numerical  differences  in

0 0.2 0.4 0.6 0.8 1.0
r sinθ/R

2

−2

−3

−4

−5

−6

1

−1

0

U
/(
Ω

R/
10

0)

×10−3

 
Figure 1.   The equatorially symmetric zonal circulation profile. The

mean zonal flow is generated via nonlinear process from columnar

convective motion whose Ekman number is 5×10–5 and Prandtl

number is 0.025.
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lower order  zonal  gravitational  coefficients.  It  is  worth  mention-

ing that there is no contribution from the hydrostatic equilibrium

structure ρ0 in odd-order gravitational coefficients (Kong DL et al.,

2016b). Geometric flattening effects from fast rotation pose negli-

gible influence. The comparison between TGWE and TWE hence is

more  straightforward.  Huge  numerical  difference  between  TWE

and TGWE modeling, as shown in the Table 4, may significantly af-

fect gravitational sounding of internal flow structure and strength

(Zhang KK et al., 2017a; Kong DL et al., 2018b).

4.  Discussions and Conclusions
In this article, we have directly and clearly demonstrated that TWE

ρ0g
′ ρ′g0

and TGWE models can yield large numerical differences in gravita-
tional  distortions  of  zonal  flows.  One of  our  illustrative  examples
of zonal  circulation  is  equatorially  symmetric;  the  other  is  equat-
orially  anti-symmetric.  The  important  point  is  that  both  of  these
flows are physically realistic in the sense they can indeed be pro-
duced and  sustained  by  thermal  convections  inside  a  rapidly  ro-
tating  planet.  The  theoretical  analyses  have  predicted  that  the
two  terms  and  in  TGWE  are  generally  of  similar  size,  if

the zonal  circulation  is  not  artificially  assumed  to  be  highly  con-
centrated  in  the  outer  shallow  layer  of  a  planet.  Our  numerical
comparisons  have  verified  this  fact,  as  listed  and  discussed  in
Tables 3 and 4.

ρ0g
′

ΔJn

ρ0g
′

ρ′g0

There are two circumstances under which the  term might be

less important. The first is the case of a terrestrial planet whose at-
mospheric self-gravity is known to be much smaller than the grav-
ity from the rocky planet. The second is the case that, after the TG-
WE is  solved for  small-scale dominant zonal  flows,  one finds that
the contribution of the ρ0g′ term to higher order  is small  be-
cause of positive-negative quadrature cancellation in the integral
22. However, in studies of gaseous planets, unlike terrestrial plan-
ets, self-gravity of the bulk of gas is crucially important and of dir-
ect  concern  to  the  research.  Also,  there  is  no a  priori knowledge
that  deep  zonal  flows  in  Jupiter  and  Saturn  are  extended  from
cloud-top  winds.  That  zonal  circulations  might  exist  in  a  vast
volume of low-conductivity interior cannot be dismissed. So, gen-
erally,  there  is  no  guarantee  that  the  term  would  be  much

smaller than the  term, under the assumption that non-spher-

ical effects of solid-body rotation are neglected.

ρ0g
′

Technically speaking, it is mathematically invalid to “prove” that a
term  is  small  through  solving  the  equation  without  the  term.
More specifically, for zonal-flow-distorted gaseous planets, the rel-
ative  importance  of  the  term  can  be  judged  only  after  the

more complete TGWE, rather than just the TWE, is computed. The
balance resulting from TWE is simply a different irrelevant physics
from what is described by TGWE.

A more  intuitive  example  may  help  explain  the  idea.  In  fluid  dy-
namics, the Euler equation neglects the viscosity term in the Navi-
er-Stokes equation.  Euler’s  equation  therefore  cannot  be  em-
ployed  to  study  any  viscous  effects,  such  as  the  problems  of
boundary  layer  and  thermal  dissipations.  It  should  be  obviously
wrong  to  use  a  solution  of  the  Euler  equation  to  claim  that  a
boundary layer effect is small.

Deep  structure  of  zonal  flows  in  fast-rotating  gaseous  planets  is
still  a  puzzle.  Gravitational  sounding  itself  is  subject  to  the  non-
uniqueness problem, and to uncertainties related to the EOS, con-
ductivity, and  so  on.  In  the  future,  more  independent  measure-
ments  are  needed  —  such  as  seismology,  microwave  sounding,
data  on  magnetic  field  secular  variation,  or  even in-situ entry
probing. Future study of this problem poses both challenges and
opportunities.
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Table 3.   The even-order zonal gravitational coefficients that are in-
duced by the equatorially symmetric zonal flow. Contrast between
results computed by TGWE and TWE is clearly seen. There is a large
discrepancy in lower order coefficients  and , which is expec-
ted from theoretical order-of-magnitude analysis.

2k JTWE
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TWE
2k − JTGWE

2k
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2k
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Table 4.   The odd-order zonal gravitational coefficients that are in-
duced by the equatorially anti-symmetric zonal flow. Comparison
between results from TGWE and TWE is clearly seen. It should be
noted that the exceptional J1 coefficient in essence marks the shift of
center of mass in the z-axis.
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