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Abstract: Using four satellite data sets (TOMS/SBUV, OMI, MLS, and HALOE), we analyze the seasonal variations of the total column ozone
(TCO) and its zonal deviation (TCO®), and reveal the vertical structure of the Ozone Low (OV) over the Asian continent. Our principal
findings are: (1) The TCO over the Asian continent reaches its maximum in the spring and its minimum in the autumn. The Ozone Low
exists from May to September. (2) The Ozone Low has two negative cores, located in the lower and the upper stratosphere. The lower
core is near 30 hPa in the winter and 70 hPa in the other seasons. The upper core varies from 10 hPa to 1 hPa among the four seasons. (3)
The position of the Ozone Low in the lower and the upper stratosphere over the Asian continent shows seasonal variability.
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1. Introduction

The ozone layer is important not only to stratospheric and tropo-
spheric climate (Andrews et al., 1987; Xie F et al., 2016; Zhang JK et
al., 2018; Guo D et al., 2017a), but also to ecological systems (Fuhr-
er and Booker, 2003). Without the ozone layer, humans, animals,
and plants could not live (Van der Leun et al., 1995). Molina and
Rowland (Molina and Rowland, 1974) discovered that chloro-
fluorocarbons were thinning the ozone layer. Furthermore, great
ozone loss was found over the South Pole (Farman et al., 1985)
and in the Arctic (Newman et al.,, 1997). Therefore, ozone deple-
tion attracted much attention. Meanwhile, a similar pattern of
ozone depletion was found in the middle latitudes. Based on Total
Ozone Mapping Spectrometer (TOMS) data, Zhou XJ et al. (1994)
first found a noticeable low value center by comparing the TCO
over the Tibetan Plateau (TP) with the eastern part of China at the
same latitude. Zou H (1996), however, calculated the zonal devi-
ations of global total ozone in different seasons of 1979-1991 us-
ing TOMS data, confirming the Ozone Low by zonal deviations.
But these definitions of the Ozone Low are not the same and do
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not have a quantitative indicator. Bian JC et al. (2006) reported an
unusual Ozone Low in the winter over the TP based on longer
TOMS datasets. Recently, Guo D et al. (2015) found a double core
structure of the Ozone Low using the Aura Microwave Limb
Sounder (MLS) data. Besides analyses of the phenomenon, there
are some studies on the Ozone Low mechanism (Guo D et al.,
20173, b ; Li ZK et al., 2017). In previous studies, the contribution
of the dynamic process to the formation of the OV was associated
with the South Asian High (SAH) (Liu Y et al.,, 2003; Li ZK et al,,
2017; Tian WS et al., 2008; Qin H et al., 2018; Guo D et al., 2012).
Moreover, many studies have suggested that dynamic effects
dominate the Ozone Low formation while stressing that the
chemical effect is also a possible factor. Fu C et al. (1997), Liu Y et
al. (2010), and Guo D et al. (2015) emphasize the chemical factors.
Tian WS et al. (2008) claimed that the atmospheric column loss,
which is impacted by the terrain, can partly explain the results in
column ozone loss. There are also other studies focused on de-
tailed features of the Ozone Low (Ye ZJ and Xu YF, 2003; Zhou SW
and Zhang RH, 2005; Moore and Semple, 2005; Tobo et al., 2008;
Liu Y et al., 2009; Zhang JK et al., 2014). In addition, the Ozone Low
is found not only over the TP, but also over the Iranian Plateau (IP)
(Wang WG et al., 2006; Yan RC et al., 2011).

However, those studies on the Ozone Low do not have a unified
criterion and show varying uncertainties in the different datasets.
Furthermore, previous studies do not consider the seasonal
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change of the Ozone Low. To clarify these problems, we examine
similarities and differences of the Ozone Low using four satellite
observation and one observation datasets (described in the fol-
lowing section). Section 3 presents seasonal variation and vertical
structure of the Ozone Low. Sections 4 and 5 present discussion
and conclusions.

2. Materials and Methods

2.1 Data
We considered four satellite observations and one observation
data. They are briefly described below.

The Total Ozone Mapping Spectrometer and the Solar Backs-
cattered Ultraviolet merged data version 8 (TOMS/SBUV) includes
measurements from six satellites: Nimbus 7 TOMS, Nimbus 7
SBUV, NOAA 9, 11, and 16 SBUV/2s, and Earth Probe TOMS. The
TOMS and SBUV instruments measure the total column ozone
(TCO) by mapping backscattered ultraviolet radiation (Heath et al.,
1975; Frederick et al., 1986; Hilsenrath et al., 1995; McPeters and
Labow, 1996; McPeters et al., 1998). In this paper, TOMS data are
used for total column ozone (TCO). The resolution of the TCO is
1° x 1.25° (latitude x longitude) and temporal coverage is from
November 1980 to December 1992.

The Ozone Monitoring Instrument data version 3 (OMI) was
launched on NASA’s Earth Observing System'’s Aura satellite. OMI
measures backscattered hyperspectral radiation in the range of
270-500 nm in three channels (Levelt et al., 2006). We use OMI
data for total column ozone (TCO). The resolution of the TCO is
1°x 1° (latitude X longitude) and temporal coverage is from Janu-
ary 2005 to December 2014.

The Microwave Limb Sounder on the Aura satellite data v4.2 (MLS)
instrument was launched on the Aura satellite. It looks through
the atmospheric limb along the orbital track and obtains a vertic-
al ozone (0s) profile by scanning the field of view up and down
(Waters et al.,, 1999, 2004, 2006). Because MLS detects microwave
emissions, this instrument measures ozone profiles during both
the daytime (ascending) and nighttime (descending). Moreover,
the number of observations in the day and night times are almost
the same. Much rigorous and detailed verification work has been
done to evaluate the MLS data (Yan XL et al., 2015; Shi CH et al,,
2017). We use MLS satellite data v4.2 (MLS) both for the total
column ozone and for the vertical profiles of ozone (Os). The resol-
ution of the TCO is 1° x 1° (latitude X longitude) and temporal cov-
erage is from January 2005 to December 2014 for the total
column ozone. The total column ozone in MLS represents the
ozone concentration in the stratosphere. But for the vertical pro-
files of ozone, the horizontal resolution of the ozone is 2° x 2° and
temporal coverage is from January 2005 to December 2014. There
are 55 layers of the ozone in the vertical direction. In addition, the
ozone unit is parts per million by volume (ppmv). More publica-
tions on MLS can be obtained from the website of the Jet Propul-
sion Laboratory.

The Halogen Occultation Experiment data version 19 (HALOE) was
launched on the Upper Atmosphere Research Satellite (Russell 111
et al., 1993, 1994). The experiment uses solar occultation to meas-

ure vertical profiles of ozone (Os) and other tracers. HALOE tracks
the top edge of the Sun. There are no systematic differences in
the tracking procedures and no significant biases in the record
between sunrise and sunset (Nazaryan et al., 2005). The horizont-
al resolution of the ozone in this article is 5° x 5° and temporal
coverage is from January 1992 to December 2005. There are 271
layers of the ozone in the vertical direction.

2.2 Methods

If the variable is F, its zonal deviation is F*. The F* can be expressed
as F* = F - [F]. Here [F] is zonal mean of F. According to this defini-
tion, the zonal deviation (TCO") of the total column ozone (TCO)
and the zonal deviation (O}) of the ozone concentration profile
(O3) will be investigated. The smaller the negative values of TCO"
and O;, the stronger the Ozone Low. In this work, the TP area is
defined as 25°N to 40°N, 80°E to 100°E. The integrated column Z
(units: DU) can be calculated as follows (Bian JC et al., 2011):

Py
7, = f 0.789 MdP,

Py

Here, P is the pressure (units: hPa) and M is the mixing ratio of
volume (units: ppmv).

3. Results

3.1 Seasonal Variability of the TCO

The TCO on the Asian continent shows seasonal variability in dif-
ferent periods for different datasets (Figure 1). A trough of the
TCO can be found over the TP in all four seasons. Over the TP, an
Ozone Low is identified in spring (March, April, and May, short as
MAM) in the OMI and TOMS satellite observations. The value is
about 290 DU in the TOMS and 280 DU in the OMI. Obviously, the
Ozone Low becomes lower in the summer (June, July, and August,
short as JJA), where a value of 270 DU is both observed in the
TOMS and OMI. And the scope of the Ozone Low is enlarged. In
the autumn (September, October and November, short as SON),
the Ozone Low drops to 255 DU in the OMI and TOMS observa-
tions. In the OMI, the scope of the Ozone Low is reduced in winter
(December-February, short as DJF). The Ozone Low is about 260
DU over the TP. However, the OV disappears in the TOMS data.
Over the TP, a very weak trough is identified in the winter. The
TCO shows a quite different seasonal change in the MLS satellite
observations; the Ozone Low appears only in the summer. There
exists a closed center controlling the western side of the Asian
continent. Additionally, we can find a low trough in Spring and
Autumn on the Asian continent.

It is obvious that the TCO shows a seasonal variation over the TP
area. To display clearly the seasonal changes in intensity of the
Ozone Low, the multi-year-average of the TCO over the TP has
been calculated. Figure 2 shows that the lowest value of the TCO
occurs in October and the highest in April in the TOMS data and in
March in the OMI data. Thus, we can conclude that the TCO over
the TP reaches its maximum in the spring and its minimum in the
autumn. Error bars indicate +2 standard deviations. The standard
deviation reaches the maximum in February in the OMI and MLS
and in March in the TOMS, which means that there is a great un-
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Figure 1. The latitude-longitude cross sections of mean total column ozone (DU) from (a) TOMS/SBUV, (b) OMI and column ozone in
stratosphere from (c) MLS in Spring (March, April, May, short as MAM), in Summer (June, July, August, short as JJA), in Autumn (September,
October, November, short as SON) and in Winter (December, January, February, short as DJF).
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Figure 2. The mean annual cycle of the total column ozone over the
TP from TOMS/SBUV (red), OMI (blue) and column ozone in
stratosphere from MLS (green). The unit is DU and error bars indicate
+2 standard deviations.

certainty of the TCO in the spring and winter.

3.2 Seasonal Variability of the TCO*
TCO™ also shows a seasonal variation of pattern and intensity in

different datasets (Figure 3). In the spring, there exists a negative
value center about -25 DU near the TP in the TOMS and OMI. A
negative value center about -20 DU can be found on the northw-
est of the TP in the MLS. There exist two negative value centers in
the summer in the TOMS and OMI. One is about -25 DU over the
TP, the other is about —20 DU over the Iranian Plateaus (IP). In the
MLS, two negative value centers can be also found, which are to
the north of those in the other datasets. One is over the Caspian
Sea with the center value about -25 DU, the other is about -20 DU
over the TP. In the autumn, a negative value center about -15 DU
can be observed over the TP in the TOMS and OMI. The IP is still
dominated by negative TCO®, but the negative value center disap-
pears. The TCO” centers can be identified over the TP in the TOMS
and OMI only in winter, with the central value about —10 DU. By
contrast, TCO" shows a quite different pattern in the MLS in the
autumn and winter. There are no obvious negative value centers
on the Asian continent. Furthermore, a positive value center can
be detected over the TP in the winter.

The TP area average of the TCO" is shown in Figure 4. Error bars in-
dicate +2 standard deviations. Compared to the multi-year-aver-
age of the TCO (Figure 2), the TCO" shows (Figure 4) totally differ-
ent results. In the datasets, the TP area average of the TCO" is low-
est in May and highest in January. It also reflects that the Ozone
Low is strong in summer and weak in winter over the TP accord-
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Figure 3. The latitude-longitude cross sections of mean total column ozone zonal deviation (DU) from (a) TOMS/SBUV, (b) OMI and column
ozone in stratosphere from (c) MLS in Spring (March, April, May, short as MAM), in Summer (Jun, July, August, short as JJA), in Autumn
(September, October, November, short as SON) and in Winter (December, January, February, short as DJF).
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Figure 4. The mean annual cycle of the total column ozone zonal
deviation over the TP from TOMS/SBUV (red), OMI (blue) and column
ozone in stratosphere from MLS (green). The unit is DU and error bars
indicate +2 standard deviations.

ing to the latitudinal distribution of ozone. If all the data obey the
standard normal distribution, when error bars of all data for each
data set are under the zero line in a month, there is at least a 95%
possibility of the Ozone Low occurrence in that month. Hence, ac-

cording to that condition, we find that the Ozone Low exists from
May to September.

In summary, we conclude that the TCO over the TP reaches its
maximum in the spring and its minimum in the autumn. The
Ozone Low is strong in summer over the TP. There are obvious
negative values of the TCO" over the TP from May to September.

3.3 Vertical Structure of the Ozone Low

Over the TP, the ozone maximum concentration in volume relat-
ive mixing ratio is in the middle stratosphere in all four seasons
(figure omitted). The peak intensity is higher in the spring and
summer. But the ozone deviation O has two negative cores, loc-
ated in the lower and the upper stratosphere (Figure 5).

The vertical structure of the O} over the TP shows a similar pat-
tern in the MLS and HALOE, and the position and intensity of the
Oj extremum exhibit seasonal variability. In the lower strato-
sphere, the extreme value of the Oj is close to 30 hPa in the
winter but 70 hPa in the spring, summer, and autumn. The ex-
tremum is slightly smaller in the spring and summer. The extrem-
um is negative. Thus, the lower core of the Ozone Low is stronger
in the spring and summer. Moreover, there exist error bars of the
05 in the lower stratosphere less than zero in the summer in all
data. Therefore, it is certain that there exists an ozone negative
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value area in the lower stratosphere in the summer.

The positions of the upper cores vary from 10 hPa to 1 hPa in all
four seasons in the MLS and HALOE data. The extreme value of
the O; is larger in the spring and summer, which is on the con-
trary to the extremum in the lower stratosphere. Comparing the
value of the upper core and the lower core, the extremum in the
lower stratosphere is slightly bigger in the spring and summer,
while in the autumn and winter, the extremum of the upper layer
is slightly bigger.

In order to determine the horizontal pattern of the Ozone Low, we
calculated the vertical integration (100-30 hPa and 10-1 hPa) of
mean O} in the four seasons.

The vertical integration in the upper stratosphere from 10 hPa to 1
hPa in the MLS and HALOE data (Figure 6) shows that there exists
a negative value center about -0.5 DU over the TP in the spring.
By summer, the negative value center has shifted slightly to the
northwest, with the value center around -0.5 DU in the MLS.
However, the negative value center disappears in HALOE. In the
autumn, the ozone negative center moves in the two datasets to
the eastern part of China at the same latitude with the TP. In the
winter, the ozone negative center moves out of the Asian contin-
ent. Meanwhile, there are still negative areas over the TP, and the
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value of O; can reach 0.5 DU, lower than that in the spring and
summer. This can explain why the upper centers of the TP are rel-
atively stronger in the autumn and winter over the TP in Figure 5
although the negative value center of the continent of Asia is not
over the TP.

In contrast, the integration from 100 to 30 hPa shows some differ-
ent characteristics (Figure 7). In the spring, Oj negative values oc-
cupy the whole Asian area. In the MLS data, the O; negative cen-
ter is located on the west of the TP. The center value reaches -12
DU. In the HALOE data, the O; negative center is located above
the TP, and the center reaches -8 DU. In summer, the O} negative
center is over the Caspian Sea, with the center value about -12 DU
in the MLS and -8 DU in HALOE. In the autumn, in the MLS there is
a large negative center around -4 DU on the west of the TP; in the
HALOE, however, the negative center about -4 DU can be ob-
served just over the IP. In the winter, no obvious ozone negative
center appears on the Asian continent in either of the two data-
sets.

4. Discussion
The seasonal variability of the TCO" is quite different from the ver-
tical integration (100-30 hPa and 10-1 hPa) of the mean O; in the
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Figure 6. The latitude-longitude cross sections of the vertical integration (10-1 hPa) of mean ozone concentration zonal deviation (DU) in the

four seasons, from (a) MLS and (b) HALOE.
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Figure 7. The latitude-longitude cross sections of the vertical integration (100-30 hPa) of mean ozone concentration zonal deviation (unit: DU)

in four seasons from (a) MLS and (b) HALOE.

four seasons. The possible reason for this result may be the
unique terrain of the TP. In addition, the Ozone Low is found not
only over the TP in the lower and the upper stratosphere. The pos-
ition of the Ozone Low on the Asian continent changes with the
seasons, which needs further study.

5. Conclusions

By using four satellite data sets (the TOMS/SBUV, the OMI, the MLS
and the HALOE), we have analyzed seasonal variations of the TCO
and TCO™ and revealed the vertical structure of the Ozone Low.

The results are described below: (1) The TCO over the TP reaches
the maximum in the spring and reaches the minimum in the au-
tumn. The Ozone Low exists from May to September. (2) The
ozone deviation O over the TP has two negative cores, located in
the lower and in the upper stratosphere. The lower core is near 30
hPa in the winter and 70hPa in the other seasons. The upper core
varies from 10 to 1 hPa among the four seasons. The lower core of
the Ozone Low in the lower stratosphere is stronger in the spring
and summer. The opposite is true in the upper layer. (3) Accord-
ing to the ozone content of the upper stratosphere, the Ozone
Low on the Asian continent exists except in the winter in MLS and
in the spring and autumn in HALOE. But for the lower strato-
sphere, the Ozone Low on the Asian continent exists in all sea-

sons except the winter. The position of the Ozone Low in the
lower and the upper stratosphere on the Asian continent shows
seasonal variability.
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