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Abstract: Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation
belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.
However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss
waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV
were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected
electrons are shown to produce a new peak of linear growth rate in the exohiss band (< 0.1fce). The corresponding path-integrated
growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed
enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could
amplify the preexisting exohiss waves.
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1.  Introduction
Wave-particle interaction  is  one  of  the  most  important  mechan-

isms  controlling  the  radiation  belt  dynamics  (see  review  by

Thorne,  2010).  In  particular,  two  types  of  whistler-mode  waves,

chorus and plasmaspheric hiss,  are frequently invoked to explain

the acceleration and loss of radiation belt electrons (e.g., Abel and

Thorne,  1998; Horne  and  Thorne,  1998; Summers  et  al.,  1998,

2002; Horne et al., 2005; Shprits et al., 2006; Artemyev et al., 2012;

Thorne et al., 2013; Ni BB et al., 2014; Su ZP et al., 2014a, 2016; Gao

ZL  et  al.,  2016; Yang  C  et  al.,  2016).  The  generation/evolution  of

the two  types  of  whistler-mode  waves  has  been  studied  extens-

ively. The substorm-injected anisotropic energetic (from a few keV

to tens of keV) electrons outside the plasmasphere are believed to
provide  the  free  energy  of  chorus  (e.g., Kennel  and  Engelmann,
1966; Li W et al., 2009; Su ZP et al., 2014b); the discrete frequency-
time  structures  (e.g., Santolík  et  al.,  2014)  of  chorus  are  usually
considered  a  result  of  the  nonlinear  cyclotron  resonance  (e.g.,
Nunn et al., 1997; Omura et al., 2008). For plasmaspheric hiss, the
candidate  generation  mechanisms  include:  (1)  origination  from
lightning whistlers in the plasmasphere (e.g., Sonwalkar and Inan,
1989; Green  et  al.,  2005), (2)  excitation  by  electron  cyclotron  in-
stability in the outer plasmasphere (Thorne et al., 1979; Li W et al.,
2013; Chen LJ  et  al.,  2014; Summers et  al.,  2014), and (3)  origina-
tion  from  chorus  outside  the  plasmasphere  (Bortnik  et  al.,  2008,
2009; Su ZP et al., 2015; Liu NG et al., 2017).

In  fact,  there  exists  another  type  of  whistler-mode  wave,  named
exohiss,  outside the plasmasphere (Russell  et  al.,  1969; Thorne et
al., 1973; Solomon et al., 1988; Kurth and Gurnett, 1991; Golden et
al.,  2009, 2011).  Different  from  the  normal  (Santolík  et  al.,  2002,
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2003b) and low-frequency (Cattell et al., 2015; Gao ZL et al., 2016)
chorus waves propagating away from the equator, exohiss waves
usually  exhibit  the  equatorward  or  bi-directional  Poynting  fluxes
(Zhu H et  al.,  2015).  Recently,  it  has  been suggested that  exohiss
waves  may  cause  precipitation  loss  of  radiation  belt  electrons
(Zhu H et al., 2015). In contrast to the significant progress made in
understanding the  generation/evolution  of  chorus  and  plasma-
spheric hiss, quite limited attention has been paid to exohiss gen-
eration/evolution. In view of the frequent occurrence of exohiss in
the  dayside  high-latitude  region, Thorne  et  al.  (1973) suggested
that exohiss could be plasmaspheric hiss leaking from the plasma-
sphere. Such  a  generation  scenario  of  exohiss  has  been  suppor-
ted  by  full-time  raytracing  simulations  (Bortnik  et  al.,  2008).
However, until now, the evolution of exohiss outside the plasma-
sphere  has  not  been  fully  understood.  Here,  on  the  basis  of  the
Van  Allen  Probes  (Mauk  et  al.,  2013)  observations  and  the  linear
instability  theory  (Kennel,  1966),  we  show  that  exohiss  can  be
amplified significantly by substorm-injected energetic electrons.

2.  Data and Methods
The twin Van Allen Probes reside in elliptical orbits to understand
the fundamental physics of the radiation belts (Mauk et al., 2013).
We mainly use the data sets from the Electric and Magnetic Field
Instrument and Integrated Science (EMFISIS) suite (Kletzing et al.,
2013)  and  the  Energetic  Particle,  Composition  and  Thermal
Plasma  Suite  (ECT)  (Spence  et  al.,  2013).  The  local  magnetic  field
was  observed  with  a  64  Hz  sample  rate  by  the  tri-axial  fluxgate
magnetometer (MAG) of the EMFISIS suite. The corresponding ra-
tio of the local magnetic field to the equatorial field is approxim-
ately  modeled  by  the  TS04  package  (Tsyganenko  and  Sitnov,
2005). The cold electron density is derived from the upper hybrid
resonance  frequency  measured  by  the  High  Frequency  Receiver
(HFR)  of  the EMFISIS  Waves instrument (Kurth et  al.,  2014).  Wave
spectral matrices with a time resolution of 6 s in survey mode and
waveforms  sampled  in  burst  mode  at  a  rate  of  35  kHz  are
provided  by  the  Waveform  receiver  (WFR)  of  the  EMFISIS  Waves
instrument.  A 70%-overlapped,  1024-point  fast  Fourier  transform
(FFT) is performed on the waveform data to obtain the wave spec-
tral matrices in the burst mode. The singular value decomposition
method (Santolík et al., 2002, 2003a, 2010) is used on these spec-
tral  matrices  (in  the  survey  and  burst  modes)  to  determine  the
wave normal angle, ellipticity, planarity, and Poynting vector. The
electron  differential  fluxes  in  the  energy  range  from  15  eV  to  4
MeV were detected by the Helium, Oxygen,  Proton,  and Electron
(HOPE) Mass Spectrometer (Funsten et al., 2013) and by the Mag-
netic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013) of the
ECT suite.

We use a recently developed code (Liu NG et al., 2018a, b; Su ZP et
al., 2018) to analyze the linear instability (Kennel, 1966) of whistler
waves; this analysis does not take into account relativistic effects.
Summers  et  al.  (2009) conclude  that  linear  growth  rates  are  not
significantly affected by ignoring relativistic effects. The temporal
growth rate γ and the convective growth rate Ki can be expressed
as

γ =
−Di

∂D0/∂ω
, (1)

Ki = γ/|Vg|, (2)

where D0 and Di are the real and imaginary parts of the dispersion
relation D(ω, k, ψ)=D0+iDi (Chen  LJ  et  al.,  2010,  equations  (A3))
with angular  frequency ω,  wave normal angle ψ, and wave num-
ber k=kcosψe‖+ksinψe⊥.  The electron phase space density and its
partial  derivative with respect  to  the velocity  vector  are  required
to calculate Di (Chen LJ et al.,  2010, equations (A4)).  Those fitting
parameters  for  the  electron  phase  space  density  are  specified  in
the following sections.

3.  Event on 21 February 2014

3.1  Observation
Figure 1 gives an overview of the exohiss enhancement event ob-
served by the twin Van Allen Probes in the time range 06:00–12:00
UT on  21  February  2014.  During  this  time  range,  the  magneto-
sphere was experiencing a moderate storm (SYM-H~–50 nT) and
some moderate substorms (AE > 600 nT).  A  steep density  gradi-
ent  in  the  plasmapause  was  detected  by  Van  Allen  Probe  A
around 06:50 UT and by Van Allen Probe B around 11:30 UT. There
existed  plasmaspheric  hiss  (0.1–2  kHz)  inside  the  plasmasphere
but chorus (0.1–0.5fce) and exohiss (0.1–0.4 kHz) outside the plas-
masphere  (Here fce represents  the  equatorial  electron  gyro-fre-
quency). The three types of whistler-mode waves were right-hand
polarized with ellipticity values >0.7, but had distinct characterist-
ics of normal angle, planarity, and Poynting flux direction. Due to
bounce  propagation  in  the  plasmasphere,  plasmaspheric  hiss
waves had low values of  planarity,  broadly distributed wave nor-
mal  angles  (30°–70°),  and  nearly  randomly  distributed  Poynting
flux directions. Chorus waves possessed small wave normal angles
(< 20°), large planarity values (> 0.7) and negative Poynting fluxes,
indicating their equatorial generation and poleward propagation.
Exohiss  waves  exhibited  small  wave  normal  angles  (<  30°)  and
moderate planarity values (0.5–0.8). The Poynting flux direction of
exohiss  appeared  to  be  dependent  on  magnetic  latitude  and
wave frequency (Zhu H et al., 2015). Around the most negative lat-
itudes  (–17°  <  MLAT  <  –14°),  exohiss  waves  were  dominated  by
equatorward propagations. As the twin probes moved toward the
equator,  the  expanding  high-frequency  part  of  exohiss  showed
poleward propagations.  These observations imply the leakage of
plasmaspheric hiss  from  both  the  Northern  and  Southern  Hemi-
spheres  of  the  plasmasphere.  Compared  to  plasmaspheric  hiss,
exohiss had an up to 2 orders of magnitude lower power spectral
density. A substorm injection arrived at Probe A around 09:30 UT;
about five minutes later,  Probe B also encountered the substorm
injection.  During the time period of  the substorm injection,  both
probes were  in  the  dayside  (MLT  ~  12:00–13:00)  southern  hemi-
sphere (MLAT < –10°) at L ~ 6.  The fluxes of injected electrons in
the  energy-time  domain  were  wedge-shaped  resulting  from  the
energy-dependent azimuthal drift of electrons. The upper energy
cut-offs of the substorm injection were ~<200 keV, and the corres-
ponding  minimum  cyclotron  resonant  frequencies  were  0.1–0.3
kHz (depending on L-shell). The substorm injection promptly en-
hanced  the  exohiss  wave  power  detected  by  both  probes.  For
Probe A, there was a 10 times enhancement of exohiss power and
the enhanced  exohiss  and  chorus  bands  merged  after  the  sub-
storm  injection.  For  Probe  B,  the  exohiss  wave  power  increased
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less  than  5  times  and  a  gap  with  a  minimum  of  wave  power
between exohiss and chorus bands existed all the time.

Figures  2 and 3 show  the  wave  fine  structure  observed  by  two

probes before and after the substorm injection. In the frequency-

time spectra,  the pre-injection chorus  and exohiss  were  basically

split in frequency by 0.1fce. After the substorm injection, the wave

power spectral  densities  over  a  wide  frequency  range  were  en-

hanced obviously  but  no  significant  changes  in  wave  fine  struc-
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Figure 1.   Exohiss amplification event recorded by Van Allen Probes A (left) and B (right) on 21 February 2014. (a) Geomagnetic activity indices

AE and SYM-H with the yellow shadow marking the interval of interest; (b, i) Cold electron density; (c, j) Electron differential flux; (d, k) Wave

magnetic power spectral density; (e, l) Wave normal angle; (f, m) Wave ellipticity; (g, n) Wave planarity and (h, o) sign of Poynting flux parallel to

background magnetic field (positive value for northward direction and negative value for southward direction). Dotted lines in Figures 1c and 1j

denote the upper energy cut-off of the substorm, and dotted lines in Figures 1d and 1k denote the corresponding minimum resonance

frequency. Dashed lines in Figures 1d–1h and 1k–1o represent 0.1fce and 0.5fce. The vertical red and black lines mark the location of the

plasmapause and the arrival time of the substorm injection, respectively. The normal angle, ellipticity, planarity and Poynting direction are shown

only for the corresponding power spectral densities PB > 5 × 10–8 nT2Hz-1.
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ture occurred.  Throughout the event,  exohiss  emission appeared

as a noisy band, while chorus emission consisted of a noisy band

and  some  sporadic  rising  tones.  Different  from  Probe  A,  Probe  B

observed a clear  increase of  the normal  angles of  whistler  waves

after  the  substorm  injection,  which  can  also  be  identified  in

Figure 1l on a relatively longer timescale. The precise physical pro-

cess responsible for the normal angle variation of both chorus and

exohiss  waves  remains  unclear.  One  possibility  is  the  change  of

the  wave  propagation  paths  associated  with  the  geomagnetic

field reconfiguration during the substorm.

3.2  Simulation
We  next  examine  whether  substorm-injected  electrons  could

amplify  the  exohiss  waves  through  cyclotron  resonance  at  the

equator. Around the substorm injection, the twin probes were loc-

ated at  the  magnetic  latitudes  of  –12°.  The  equatorial  cold  elec-

tron number  density N0 and phase space density F are  assumed

to equal  those observed locally. Figure  4 plots  the observed and

modeled hot  electron  phase  space  densities  dependent  on  en-

ergy Ek and pitch angle α before and after the substorm injection.

Before the substorm injection, the hot electron phase space dens-

ity function is  written as a  combination of  three subtracted Max-

wellian components (Ashour-Abdalla and Kennel, 1978):

F =
∑3

i=1
Fi =

∑3

i=1

ni
√
π

3
µ∥iµ⊥

2

i

exp
(−v2

∥

µ∥
2
i

)
×

{
σiexp

(−v2
⊥

µ⊥
2
i

)
+

1−σi

1−βi

[
exp

(−v2
⊥

µ⊥
2
i

)
− exp

( −v2
⊥

βiµ⊥
2
i

)]}
,

(3)

µ⊥i µ∥iwith  density  parameter ni,  thermal  parameters  and ,  and

loss cone parameters σi and βi of each component. After the sub-

storm injection, the two low energy components are assumed to

be  unchanged.  To  reproduce  the  phase  space  density  peak  near

Ek = 100 keV, the third component is expressed as

F3 = ρ
(
s inζα+ ϵ

)
exp

[
−
(v−µ
τ

)2
]
, (4)

with  density-like  parameter ρ,  thermal  parameters μ and τ,  and

loss  cone parameters ζ and ϵ.  All  these  fitting  parameters  before

and after the substorm injection are listed in Table 1.  Clearly,  the

modeled and observed electron phase space densities agree reas-

onably well with each other for both probes.

Figure 5 shows the wave growth rates  and spectral  densities  be-

fore and  after  the  substorm  injection.  According  to  the  observa-
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Figure 2.   (a–f) Pre-substorm and (g–l) post-substorm wave fine structure recorded by Van Allen Probe A. (a, b, g, h) Power spectral density; (c, i)

Wave normal angle; (d, j) Ellipticity; (e, k) Planarity, and (f, l) sign of Poynting flux parallel to background magnetic field. The dashed lines in each
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Figure 3.   Same as Figure 2 but for Probe B.
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tions  in Figures  1e and 2c,  the  linear  instabilities  of  parallel-

propagating whistler  waves  are  analyzed for  Probe A.  Before  the

substorm injection, the most pronounced peak of the growth rate

occurs in the chorus band centering at f/fce = 0.25. After the sub-

storm injection,  the  modeled  electron  phase  space  densities  be-

low Ek < 60 keV are unchanged (Figure 4) and the magnitudes of

wave  growth  rates  in  the  frequency  range f/fce = 0.15–0.37  in-

crease  slightly,  roughly  explaining  the  insignificant  variation  of

the  power  spectral  densities  in  the  chorus  band.  In  contrast,  the

enhancement of electron phase space densities above Ek > 60 keV

produces a new peak (1.1 × 10–7 m–1)  of wave growth rate in the

P̄ =
Pf

Pi
=

[
exp(Kis)

]2
= 13.4

frequency  range  0.03–0.1fce.  According  to  the  linear  theory,  the

preexisting  exohiss  lying  in  the  frequency  range  below  0.1fce

should  experience  an  amplification.  Assuming  that  the  exohiss

amplification occurs within 10° latitude of the magnetic equatori-

al  plane  (with  the  magnetic  field  line  length s ~  1.3×107 m)  and

that  the  wave  growth  rates  are  constant  (Ki ~  10–7 m–1),  we  can

roughly  obtain  the  path-integrated  amplification  ratio  of  exohiss

power  (with  final  wave  power Pf

and  initial  wave  power Pi).  The  simulated  amplification  generally

explains  the  observed  intensification  (up  to  10  times)  of  exohiss

power spectral densities. Considering the observed normal angle

Table 1.   Fitting Parameters for electron phase space density

ni (m–3) µ⊥i (ms–1) µ∥i (ms–1) σi βi

Low energy pre & post 7×103 1.5×107 1.2×107 1.00 0.9

15×103 5×107 4.3×107 0.8 0.9

High energy

pre
ni (m–3) µ⊥i (ms–1) µ∥i (ms–1) σi βi

1.4×103 9.6×107 9.3×107 0.8 0.9

post
ρ (s3m–6) μ (ms–1) τ (ms–1) ζ ϵ

7×10–23 1.65×108 2.7×107 2.0 0.6
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Figure 5.   Convective growth rates (a, c) and magnetic power spectral densities (b, d) of whistler-mode waves for Van Allen Probes A (left) and B

(right). Equatorial magnetic field Be and cold electron density N0 for calculations are listed in Figures 5a and 5c. The averaged amplitudes of

exohiss ΔBEH before and after the substorm injection are listed in Figures 5b and 5d. Convective growth rates are color-coded according to

normal angles and time (shown).
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variations  for  Probe B  (Figures  1l and 3i),  we have calculated the

wave linear growth rates at normal angles of 0°,  15°,  25°,  30° and

35°,  respectively.  One  can  find  that,  for  the  whistler  wave  with  a

larger  normal  angle,  the  frequency  range  allowing  wave  growth

becomes narrower, and the corresponding peak growth rates be-

come  lower.  Because  of  the  increase  of  exohiss  wave  normal

angle after the substorm injection (Figures 1l and 3i), Probe B ob-

served a weaker enhancement of wave power than Probe A.  The

wave growth rates at larger normal angles exhibit a more obvious

gap  between  exohiss  and  chorus  bands,  explaining  the  merged

quasi-parallel bands of RBSP-A and the split oblique bands of RB-

SP-B.

Considering the temporal evolution of injected electron fluxes, we

analyze  the  dynamic  instabilities  of  whistler  waves  over  a  time

period to  give  a  more  comprehensive  view  of  exohiss  amplifica-

tion. As shown in Figure 5, the exohiss is amplified mainly by ener-

getic (>  60  keV)  electrons.  We  use  the  smooth  cubic  spline  ap-

proximation  (Reinsch,  1967)  to  model  the  electron  phase  space

density observed by MagEIS (> 30 keV) and adopt the B-spline in-

terpolation (De Boor, 1977) to evaluate the required partial deriv-

ative of the electron phase space density with respect to the velo-

city vector (more details given by Liu NG et al., 2018a). In Figure 6,

one can observe clear correlations between enhancements in the

observed wave power and in the calculated growth rates of exo-

hiss  waves.  The  obtained  growth  rates  appear  to  be  quite  small

(10–8–10–7 m–1), suggesting  that  it  is  difficult  for  energetic  elec-

trons alone  (without  preexisting  source  waves)  to  produce  ob-

servable whistler  waves.  However,  when wave growth is  allowed

in the frequency range of < 400 Hz, the preexisting exohiss can be

effectively  amplified.  After  09:50  UT,  the  peak  frequency  of  the

wave  growth  rate  increases  rapidly,  accounting  for  the  observed

frequency variation of exohiss waves. The main cause is the rapid

decrease  of  the  upper  energy  cut-off  of  the  substorm-injected

electrons.  Corresponding  to  the  observed  weakening  of  wave
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power for  Probe A after  10:55 UT and for  Probe B after  10:30 UT,

the calculated growth rates decrease significantly because of the

reduction of electron temperature anisotropy.

4.  Event on 5 May 2014
To illustrate  the generality  of  the previously  obtained results,  we

additionally show an exohiss amplification event observed by the

Van Allen Probes on 5 May 2014. An overview of this event is giv-

en in Figure 7; the wave fine structure of Probe B before and after

the substorm injection is given in Figure 8. The propagation char-

acteristics  of  plasmaspheric  hiss,  chorus,  and  exohiss  were  quite

similar to  those of  the previous event  on 21 February 2014.  Out-

side the plasmapause, both the exohiss and the lower band chor-

us appeared  to  be  structureless,  while  some  rising  tones  consti-

tuted the upper band chorus. Around 07:30, the chorus exhibited

a reversion in the direction of Poynting flux across the equator, in-

dicating  its  equatorial  generation  (Santolík  et  al.,  2003b). In  con-

trast,  the  exohiss  leaked  out  of  the  high-latitude  plasmapause

(Thorne  et  al.,  1973)  had  bi-directional  Poynting  flux  near  the
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equator (Zhu H et al., 2015). The substorm injection was detected

by the twin Van Allen Probes around 06:35 UT in the dayside (MLT

~ 08:00–09:00) equatorial region at L ~ 5–6. The upper energy cut-

offs of  the  substorm  injection  were  ~<  200  keV,  and  the  corres-

ponding minimum  cyclotron  resonant  frequencies  were  well  be-

low  the  lower  frequency  cut-offs  of  the  exohiss  waves.  After  the

substorm injection,  the exohiss  waves were obviously  intensified

(up to 10 times, at the location of Probe B). Using the MagEIS data

(>30  keV),  we  calculate  the  linear  growth  rates  of  parallel-

propagating whistler waves (Figure 9). Just after the substorm in-

jection, the modeled growth rates peak around 600 Hz for Probe

A, producing relatively limited effect on exohiss in the frequency

range of  100–500  Hz.  About  20  min  later,  the  decreased  back-

ground magnetic  field  allows  the  growth  of  waves  at  lower  fre-

quencies, corresponding  to  the  significant  enhancement  of  exo-

hiss  waves  observed  by  Probe  A.  In  contrast,  Probe  B  encoun-

tered  the  substorm  injection  at  an  outer L-shell  with  a  weaker

background magnetic field and then observed a prompt enhance-

ment of  exohiss  after  the  substorm  injection.  These  results  sup-

port  the  conclusion  that  substorm  injected  energetic  electrons

amplify exohiss.

5.  Summary
Generation and  evolution  of  whistler-mode  chorus  and  plasma-

spheric hiss  have  attracted  considerable  attention  in  past  dec-

P̄ = 13.4

ades.  In  this  study,  we focus  on the  evolution of  a  poorly-under-

stood  whistler-mode  emission  outside  the  plasmasphere  named

exohiss  (Thorne  et  al.,  1973).  On  21  February  2014,  the  twin  Van

Allen Probes detected a substorm injection in the noonside (MLT

~  12:00–13:00)  southern  hemisphere  (MLAT  <  –10°)  outside  the

plasmasphere (L = 6.0).  In  response to the sudden enhancement

of  60–200  keV  energetic  electron  fluxes  by  up  to  5  times,  the

power spectral  densities  of  exohiss  waves  exhibited  intensifica-

tion of up to 10 times. The linear instability of energetic electrons

(Kennel,  1966; Chen LJ et al.,  2010) is shown to be able to gener-

ally explain  the  timing  and  the  magnitude  of  exohiss  wave  en-

hancement.  Before  the  substorm  injection,  the  growth  rates  are

found to peak in the chorus band (0.1–0.5fce). The substorm-injec-

ted energetic electrons are able to produce a new peak of growth

rate in the exohiss band (< 0.1fce). The corresponding peak growth

rate is  about  10–7 m–1 and the path-integrated amplification rate

of  wave  power  within  10°  latitude  of  the  magnetic  equatorial

plane  reaches .  The  analogous  evolution  characteristics

of exohiss were also observed by Van Allen Probes on 5 May 2014.

These data and modeling tend to support the amplification of ex-

ohiss, probably  originating  from  the  plasmaspheric  hiss,  by  sub-

storm-injected energetic electrons.

It should  be  mentioned  that  this  study  is  limited  to  simple  ana-

lyses of some local plasma instabilities. More rigorous future test-

ing of the exohiss amplification scenario should be done with ray-
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Figure 8.   Same as Figure 2 except for the 5 May 2014 event recorded by Van Allen Probe B.
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tracing simulations (e.g., Horne, 1989) and/or particle simulations.
For  the  events  reported  here,  the  substorms  caused  the  exohiss
amplitude  to  increase  from  <10  pT  to  ~40  pT.  Future  studies
should investigate the statistical characteristics of exohiss and ad-
opt  some  global  models  (e.g., Varotsou  et  al.,  2008; Albert  et  al.,
2009; Shprits  et  al.,  2009; Su  ZP  et  al.,  2010, 2011; Tu  WC  et  al.,
2014) to accurately evaluate the role of exohiss waves in radiation
belt electron dynamics.
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