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Abstract: A map of the average atomic number of lunar rock and soil can be used to differentiate lithology and soil type on the lunar
surface. This paper establishes a linear relationship between the average atomic number of lunar rock or soil and the flux of position
annihilation radiation (0.512-MeV gamma-ray) from the lunar surface. The relationship is confirmed by Monte Carlo simulation with data
from lunar rock or soil samples collected by Luna (Russia) and Apollo (USA) missions. A map of the average atomic number of the lunar
rock and soil on the lunar surface has been derived from the Gamma-Ray Spectrometer data collected by Chang’e-1, an unmanned
Chinese lunar-orbiting spacecraft. In the map, the higher average atomic numbers (Zx > 12.5), which are related to different types of
basalt, are in the maria region; the highest Z, (13.2) readings are associated with Sinus Aestuum. The middle Zx (~12.1) regions, in the
shape of irregular oval rings, are in West Oceanus Procellarum and Mare Frigoris, which seems to be consistent with the distribution of
potassium, rare earth elements, and phosphorus as a unique feature on the lunar surface. The lower average atomic numbers (Za < 11.5)
are found to be correlated with the anorthosite on the far side of the Moon.
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1. Introduction

The average atomic number of lunar rock and soil is an important
geophysical and geochemical parameter. A map of the average
atomic number of lunar rock and soil can be used to differentiate
lunar surface lithology and soil types. The relationship between
fast neutron flux from the lunar surface and the average atomic
mass of lunar soil was found by Gasnault (Gasnault et al., 2001),
which confirmed that fast neutron leakage flux in the energy
range of 0.6 to 8 MeV was proportional to average soil atomic
mass. Accordingly, from the fast neutron spectra collected by the
Lunar Prospector Fast Neutron Spectrometer (LPFNS), a map of
the average atomic mass of lunar rock and soil was obtained with
a precision of ~20%.

The Gamma-Ray Spectrometer (GRS) aboard the Chinese lunar-or-
biting spacecraft Chang’e-1 provides the distribution of major ele-
ments O, Si, Mg, Al, Ca, Na, and Fe (Hasebe et al., 2009; Kobayashi
et al.,, 2012) and natural radioactive elements U, Th, and K on the
lunar surface (Hasebe et al., 2009; Ouyang ZY et al., 2011; Zhu MH
et al.,, 2013, 2015). During the Chang’e-1 mission, the spacecraft
stayed in a circular polar orbit with a period of 127 minutes at a
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nominal altitude of 200 km. Global GRS data over intervals of 3
seconds were obtained from the in-flight gamma spectra in the
energy range of 0.1 to 9 MeV (Hasebe et al., 2009; Ma T et al., 2008;
Yang Jetal,, 2013; Zhu MH et al., 2010).

The high-energy gamma rays from the lunar surface originate pre-
dominantly from cosmic neutron and proton interactions with
lunar rocks and soil (Reedy, 1978). Some characteristic gamma
rays are identified from GRS data (Hasebe et al., 2009; Yang J et al.,
2013; Zhu MH et al., 2010). GRS peaks at or near 0.512, 0.58-0.61,
1.46, 1.80, 2.20-2.62, 6.1, 6.76, and 7.1-7.6 MeV are associated
with position annihilation radiation (PAR) and natural or induced
radiation from the elements U, Th, K, Al, Si, O, Ti, and Fe (Yang J et
al.,, 2013; Zhu MH et al., 2011).

This paper investigates the relationship between 0.512-MeV PAR
intensities and the average atomic number of lunar rock and soil.
First, an analytical model suggests a linear relationship between
the PAR flux from the lunar surface and the average atomic mass
of surface rock and soil. Second, the analytical model is found to
agree well with results of the Monte Carlo simulation. Finally, a
map of the average atomic number, obtained by the model with
data from the Chang’e-1 GRS, is constructed.

2. Theory

The 0.512-MeV gamma rays are generated from PAR, in which the
positron is from pair production (Knoll, 2000). In Figure 1, we con-
sider a simplified physical model for calculating the flux of 0.512-
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MeV gamma rays emitted from the lunar surface as a semi-infinite
homogeneous medium. In the model it is assumed that the yield
of gamma rays induced by the cosmic rays is a constant over the
depth of interest.

0.512-MeV Gamma rays

o 111
t

Vacuum
Lunar surface

Lunar Rock or Soil

dx

Figure 1. Diagrammatic sketch of the leakage of 0.512-MeV photons
from the lunar surface.

The flux of annihilation photons produced in a thin layer of thick-
ness dx is given by

20C;Npydx
dIdX: ZpIA—AZK[jIE;’ (1)

j=1 7 i=1

where A; is the atomic mass of the jth element in layer dx, C; is the
mass fraction of the jth element in layer dx in percent, p is the
density of lunar soil or rock in grams per cubic centimeter, I, is
the flux of excitation gamma rays in the layer with energy Ej, in
cm~2 571, N, is the Avogadro's constant, 6.02x1023, the coefficient
of 2 indicates that two annihilation photons are generated per
pair-production interaction, and Kj is the probability of pair-pro-
duction interaction between a photon of energy E; and an atom of
element Z;, which can be given by (Knoll, 2000)

Kij = kZJZ ln E,‘, (2)

where kisaconstant,and £, in MeV, is the ith energy above 1.02 MeV.

Equation (1) can be rewritten as
m C ZZ n
dly, = 2pkNydx Y ——L N I, InE.. (3)

j=1

Because the lunar rock and soil mainly consists of petrogenetic
elements, the ratio of Z; to A;approximates to 0.5. Therefore, Equa-
tion (3) transforms to

dly, = pkNpdx Z Ciz, Z I, InE,. 4)

j=1 i=1

The flux of 0.512-MeV gamma rays emitted from layer dx will at-
tenuate through upper layers to the lunar surface (see Figure 1).
The flux of 0.512-MeV gamma rays from layer dx to the lunar sur-
face can be given by

dlysp = dlge™0, 5)

where L5, is the linear attenuation coefficient of 0.512-MeV
gamma rays for the lunar medium in cm-'.
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The flux of 0.512-MeV gamma rays leaking out the lunar surface,
lo512, is an integral over the semi-infinite layer.

10.512=f dle ™" dx
0

= PN, Z CiZ, ZuE,IE, InE, f etosntdx
0

=1 i=1
_ PkNy

HMosi2

Zy Y g ls NE,
(©6)

m
where Z, = ZCij is the average atomic number of the rock
j=1
and soil on the lunar surface.
The flux of gamma rays with energy E; induced by cosmic rays
striking the lunar surface, I3, is given as following

N
L= f I e dx
0

= i, (7)

HE;
where I, is the yield of gamma rays in the thin layer and is as-
sumed as a constant, (i, is the linear attenuation coefficient of the
lunar rock and soil for gamma rays with energy E; in in cm~'. ug,
can be calculated by XCOM software, which is developed by the
National Institute of Standards and Technology.

From Equation (6), the average atomic number of the lunar rock
and soil can be expressed as a function of IZ( and los12,

10.512 (8)

ZA =a- P 5
Z/lE’IZ-, lnE,
i=1

where a:ﬁ is a coefficient that could be obtained by Monte

P
Carlo simulatio/r\w, as described in Section 3. The net peak area, Np,,
is as

NE,v = SiIE,-, (9)
where g, is the peak efficiency of the gamma-ray spectrometer at
energy E;.
From Equations (8) and (9), we get

Zi=a Nysi2/&o512 ’ (10)

Zﬂﬁ, InE; 'NE/EE‘

i=1

where Nys;, and Ng are the net peak areas with 0.512-MeV and
E.. In this equation the net peak areas are obtained from Chang'e-
1 GRS data, and the peak efficiency of &5, and &, canbe ob-
tained by Monte Carlo simulations.

3. Monte Carlo Simulation

3.1 Simulation of the PAR Flux Emitted from the Lunar
Surface
The Geant4 Monte Carlo code has been used to simulate the
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gamma ray spectra from the lunar surface (Gurtner et al., 2006;
Ohishi et al., 2004; Yamashita et al., 2008). The model consists of a
cylinder which is filled with the lunar rock and soil with a density
of 2.0 g/cm3 and a 40cm-diameter sphere current detector, as
shown in Figure 2. The detector is placed on the axis of the cylin-
der, 0.5 m above the cylinder’s upper surface. Six types of lunar

Table 1. Compositions and average atomic numbers of six lunar rocks

rock, including KREEP, anorthosite, dunite, high alumina basalt,
low titanium basalt, and high titanium basalt, are used to study
the relationship between the average atomic number and the flux
of 0.512-MeV gamma rays. The compositions and average atomic
numbers of the six lunar rocks are given in Table 1 (Heiken et al.,
1991).

Sample #12038 #15405 #14053 #72417 #12002 #10003
ID lithology High alumina basalt KREEP Anorthosite Dunite Low titanium basalt  High titanium basalt
Compositions (wt%)

o) 41.62 44.04 46.13 43.10 40.70 38.32

Na 0.50 0.67 0.22 0.01 0.17 0.30

Mg 4.05 217 0.15 27.24 8.90 4.04

Al 6.73 6.74 18.63 0.69 4.15 5.54

Si 21.92 26.58 20.84 18.56 20.26 18.70

K 0.06 173 0.02 0.02 0.04 0.05

Ca 8.27 5.84 13.75 0.77 5.87 7.98

Ti 281 1.62 0.01 0.03 224 9.16

Cr 0.05 <0.01 <0.01 0.23 0.65 0.17

Mn 0.20 <0.01 0.01 0.09 0.22 0.23

Fe 13.79 10.61 0.24 9.26 16.80 1551
Average Atomic 1375 13.07 11.89 12.06 13.97 14.67

Number

The primary source beam injected into the lunar rock and soil is
100-MeV protons. The energy range of gamma ray spectra is from
0.01 to 10 MeV and the energy interval is 4.89 keV. The number of
history events is set as 2.0x10° and the statistical error of results is
<5% in any energy bin.

Sphere Current Detector

Inelastic scattering y ~ Neutron capture y

[~ Proton

Lunabase

Fast neutron—— %

Figure 2. Geant4 simulation model of proton-induced gamma rays.

Figure 3 shows the gamma-ray spectrum simulated by Geant4
Monte Carlo code of low titanium basalt. The spectrum is com-
posed of characteristic gamma lines with discrete energies and
scattered gamma rays with continuous energies. The 0.512-MeV
gamma line has the highest flux. Higher flux of gamma lines are

found at 0.847 MeV (°6Fe), 1.37 MeV (2*Mg), 1.78 MeV (28Si), and
6.13 MeV ('60). These are the major elements of the low titanium
basalt. Some other lines from 160 (7.12, 6.91, 4.44, and 3.68 MeV),
27A1 (3.00, 2.21, and 1.01 MeV), 28Si (2.84 MeV), and %°Ca (3.74
MeV), produced from neutron inelastic scattering, can be ac-
quired. In addition, a fraction of the gamma rays in the spectrum
are produced by neutron capture (e.g., 4.93 MeV (2Si), 6.76 MeV
(#8Ti), and 7.64 MeV (55Fe)) (Reedy, 1978, 2000, 2013). The simula-
tion results for the PAR flux and higher flux gamma lines for the
six lunar rocks are given by Table 2.

The flux of PAR and induced gamma rays in the six lunar rocks, cal-
culated by Geant4 Monte Carlo code, are listed in Table 2. The

n
Z,uE,,Igl InE; is calculated in table, which the average value i,

ulsed is listin Table 3.

3.2 Simulation of the Linear Attenuation Coefficients and
Constant a

The ug, of KREEP, anorthosite, dunite, high alumina basalt, low ti-

tanium basalt, and high titanium basalt are listed in Table 3. The

relative errors of g between the average value and each litho-

logy are <+2%.

The relationship between the ratio of /o512 to Z,uE,IE, InE;and Zy

is shown in Figure 4. The a in Equation (10) fo'rzlcalculating the av-
erage atomic number of the lunar rock and soil is obtained by lin-
ear fitting. The a values for the six lunar rocks are listed in Table 2
and the average a for lunar rocks and soils is 1.10.

Ge L Q et al.: Mapping of the lunar surface on average atomic number
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Figure 3. The spectrum by Geant4 Monte Carlo code of low titanium basalt. The characteristic peaks between 1 and 4.5 MeV are marked in red.

Table 2. Gamma flux from six lunar rocks simulated by Geant4 Monte Carlo code®

Reaction

High alumina

Low titanium  High titanium

Nuclide Energy (MeV) mode basalt KREEP Anorthosite Dunite basalt basalt
I, (cm)
0.512 297.97(1.8) 288.48(1.8) 257.98(1.2) 323.01(1.4) 305.93(1.3) 316.65(1.3)
_ 7.12 1.20(3.7) 1.16(3.5) 1.16(3.5) 1.27(3.7) 1.23(3.7) 1.18(3.7)
6.91 bAR 16.57 (14.2) 17.42(14.1) 17.66(13.3) 16.62(14.4) 16.17(14.0) 15.79(13.8)
6.13 62.27(2.0) 65.18(1.9) 66.99(1.9) 61.23(2.0) 60.75(2.0) 59.38(2.1)
160 444 19.12(3.6) 19.71(3.5) 19.56(3.5) 21.67(3.4) 19.31(3.6) 18.50(3.6)
3.68 21.84(12.3) 22.59(12.0) 23.12(12.7) 21.25(12.3) 21.37(12.2) 21.32(11.3)
Mg 137 58.16(2.0) 33.90(6.7) 8.14(6.3) 320.76(0.9) 119.16(4.8) 60.57(2.1)
Al 3.00 8.87(5.4) 8.65(7.1) 17.75(3.6) 3.51(9.7) 6.73(6.5) 8.31(6.3)
221 17.13(3.9) 16.66(4.7) 34.80(2.5) 6.18(7.5) 12.70(4.6) 15.88(4.1)
256 2.84 ) 10.61(5.0) 11.94(4.9) 9.82(5.0) 8.54(5.6) 10.02(5.1) 10.25(5.1)
1.78 112.97(1.4) 132.86(1.4) 99.99(1.5) 85.48(1.6) 105.22(1.5) 102.67(1.5)
40Ca 3.74 9.09(5.3) 6.93(5.8) 12.19(4.4) 3.07(10.3) 7.25(6.1) 10.28(5.0)
28Sij 493 4.40(8.0) 4.84(7.9) 4.90(7.1) 5.33(7.0) 4.41(7.9) 4.09(8.4)
48T 6.76 (ny) 1.40(14.8) 1.43(15.3) 1.36(15.3) 1.55(14.2) 1.45(14.9) 1.44(14.7)
56Fe 7.64 2.78(7.3) 2.52(6.4) 0.64 (20.5) 4.37(5.5) 3.46(6.3) 2.35(8.2)
’ZlyEl Il‘f InE; 23.88(30.0) 24.51(30.2) 24.12(33.5) 29.78(27.9) 24.72(29.1) 22.82(32.3)
Lysio
an,UE,IZ InE, 12.48(30.1) 11.77(30.3) 10.70(33.5) 10.85(27.9) 12.38(29.1) 13.88(32.3)
- i
a 1.10(30.1) 1.11(30.3) 1.11(33.5) 1.11(27.9) 1.13(29.1) 1.06 (32.3)

Notes: "The values in parentheses present the relative errors for Igi in unit of millesimals, provided by the Geant4 Monte Carlo code, and the
others are the transfer relative errors. In particular, the relative errors for the average atomic number “Z," cannot be acquired. Consequently, the

n
transfer relative errors for "a” are instead that of los12/ X pg I3, InE;.

i=1
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Table 3. The ug, of KREEP, anorthosite, dunite, high alumina basalt, low titanium basalt, and high titanium basalt

Energy #12038 #15405 #14053 #72417 #12002 #10003 Average
(MeV) High alumina basalt KREEP Anorthosite Dunite Low titanium basalt High titanium basalt value
Linear attenuation coefficient g, (x1072 cm™)
137 17.14 17.17 17.21 17.18 17.12 17.07 17.15
178 10.72 10.75 10.80 10.77 10.71 10.66 10.73
221 9.38 941 9.44 9.42 9.37 9.34 9.39
2.84 841 842 845 842 8.40 8.38 841
3.00 744 745 745 743 744 743 744
3.68 7.25 7.25 7.26 7.24 7.25 7.24 7.25
374 6.61 6.60 6.59 6.57 6.61 6.61 6.60
4.44 6.57 6.56 6.54 6.52 6.56 6.57 6.55
493 6.11 6.09 6.06 6.05 6.11 6.12 6.09
6.13 5.86 5.84 5.80 5.79 5.87 5.89 5.84
6.76 5.43 5.40 5.34 533 5.44 5.47 5.40
6.91 5.27 5.23 5.16 5.15 5.28 5.32 5.24
7.12 5.24 5.19 512 511 5.25 5.29 5.20
7.64 5.19 5.15 5.07 5.07 5.21 5.25 5.16
15 Table 4. Relative gamma peak efficiencies calculated by Geant4
- Monte Carlo code simulation
_ Energy (element) (MeV) Relative peak efficiency &;/&o512 (%)
7‘\’; ] 0.512 100
g Fitting 1.12(214Bi) 56.51(0.87)*
é 134 1.37 (**Mg) 48.98(0.51)
2 1.46 (%K) 47.34(0.73)
g e e 76048 57070
:% . APE?'I;O'HS.Z; Oégg;i 1.78 (28Si) 44.23(0.23)
Value  Standard Er : -3
2 Is'If;Zep' 1.1004(;; 0.01099 2.21(?7Al) 41.07(0.49)
"y 10 11 12 13 14 15 2.62(208TI) 39.44(0.99)
oo/ (e 15 InE) 2.84 (55)) 39.33(0.54)
Figure 4. Relationship between average atomic number and 3.00(7Al) 39.17(0.67)
Iy 512 3.74(*Ca) 38.88(0.64)
Z pup 13 In E; . 4.93 (38i) 38.76(0.81)
i=1
3.3 Simulation of Peak Efficiency of the GRS 676 C°T0 3824150
7.64 (56Fe) 38.11(0.66)

To calculate the average atomic number of the lunar rock and soil
from Chang’e-1 GRS data, the peak efficiency &; of the Chang'e-1
GRS is determined at 0.512 MeV and other high energies by
Geant4 Monte Carlo code simulation. The gamma-ray source used
in simulation uniformly distributes on a surface. The relative peak
efficiency to that at 0.512 MeV, are given in Table 4.

4. Average Atomic Number of Rock and Soil on Lunar

Surface

4.1 Gamma-ray Spectra from Chang’e-1

Notes: *Values in parentheses present the relative transfer errors for
&il€os12-

2467169 spectra recorded by Chang’e-1 GRS (Ma T et al., 2008) are
used to map the average atomic number of rock and soil on lunar
surface. A map with grid of 150 kmx150 km is applied to cover the
Moon.

The spectrum, as shown in Figure 5, is the sum of all the available
spectra in different flight cycles of Chang’e-1 GRS in the same grid.
The background, estimated by a fast-Fourier-transform numerical

Ge L Q et al.: Mapping of the lunar surface on average atomic number



method (Zhang QX et al,, 2012), and net spectrum are also shown
in Figure 5. As seen in the figure, the 0.512 MeV peak from the
PAR is obvious. Other peaks corresponding to isotopes in the lun-
ar rock and soil also can be easily identified: e.g., at 0.6 MeV
(214Bi+208Tl), 1.45 MeV (2*Mg+4°K), 1.78 MeV (28Si+214Bi), 2.1-2.7
MeV (¥7Al+208Tl), 5.8-6.7 MeV ('©0+48Ti), and 7.64 MeV (°%Fe). A
subset of these peaks, at 145 MeV (2*Mg+4%K), 1.78 MeV
(28Si+214Bi), 2.1-2.7 MeV (27Al+208T]), 6.76 MeV (*8Ti), and 7.64 MeV
(°Fe), are selected for evaluating the average atomic numbers by
Equation (10). The energy ranges of these peaks are defined in

100 + — Spectrum
Estimated background
Net spectrum
PA
’i 10 4 [|2osT1+214B}
Cw/ 24Mg+4oK
E 2B
© 214B4 27A1 2A1 160+56Fe
1 20jTl 0Ca - 160+4Ti
Siy 25 S { o y
)\ m * h * *Fe
P
N LT 7 S
1 2 3 4 5 6 7 8 9
Energy (MeV)

Figure 5. Gamma-ray spectrum recorded by Chang’e-1 GRS in the
region of Mare Imbrium.

Table 5. Energy range of peaks in spectrum recorded by Chang’e-1
GRS

Energy(element) (MeV)

Energy band (MeV)

0.512 0.466 to 0.558
1.12(214Bi) 1.03to 1.23
1.45 (A0K+24Mg) 1.26 to 1.63
1.78 (214Bi+28Si) 1.65t0 191
2.21(¥7Al) 1.96 to 2.38
2.62(208T1) 24210270
2.84 (28Si) 27210290
3.00(27Al) 2.89t03.11
3.74(*Ca) 3.60 to 3.87
4.93 (28Si) 47510 5.11
6.76 (*8Ti) 4.66 to 7.00
7.64 (°%Fe) 7.36t0 791

Table 5. &;/€y512, a and g, are obtained in section 3.

The peak at ~6.0 MeV, from the inelastic scattering of fast neut-
rons on oxygen, is not used to evaluate the average atomic num-
ber of lunar rock and soil, because the fuel tank is near the GRS
and the residual oxygen cannot be quantified during the Chang’e-
1 mission.
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To acquire the net counts directly from PAR at 0.512 MeV, the
overlapping portion from the 0.511-MeV gamma rays of 208T]|
should be removed since the relative emission fraction of the
0.511-MeV gamma ray from 208T] is 25% of its 2.62-MeV gamma
ray. The relative efficiency to 298Tl is 39.44% (to PAR). So when cal-
culating the net peak area of the 0.511-MeV, the contribution
from 208T|, amounting to 63.38% of the area of the 2.62-MeV
gamma ray, should be removed.

4.2 Map of Average Atomic Number of the Lunar Surface
To verify the results of Figure 6, average atomic numbers of the
lunar rock and soil at points where Apollo and Luna rovers landed
and took samples are recorded. The scatter diagram of the atomic
mass of samples from the A11, A12, A15, A16, A17,L16, L20, and
L24 mission (Gasnault et al., 2001) and the average atomic num-
bers are plotted in Figure 7. The error bars on average atomic
number are the transferred relative errors of “a”, “uz"” and the GRS
measurement statistical errors. As seen in Figure 7, the correlation
coefficientis 0.7176 between average atomic number and aver-
age atomic mass.

As seen in Figure 6, the higher Za value region corresponds to lun-
ar maria, such as Mare Frigoris (56.0°N, 1.4°E), Mare Vaporum
(13.3°N, 3.6°E), Mare Australe (38.9°S, 93.0°E), and Mare Imbrium
(32.8°N, 15.6°W) (Jolliff et al., 2000). This result is in agreement
with the results of average atomic mass mapping by the Lunar
Prospector Neutron System (LP-NS) (Elphic et al., 1998; Feldman et
al., 1998; Gasnault et al.,, 2001), especially on the edge of Mare Va-
porum and Mare Insularum (7.5°N, 30°W), close to Sinus Aestuum
(10.9°N, 8.8°W), with a Z, value up to 13.2. Its regional strike tends
southwest throughout the Mare Imbrium and Mare Vaporum, cor-
responding to the Apollo gamma-ray system data: A majority of
maria are covered by different types of basalt, all of which have a
higher average atomic number than other lunabase (Hasebe et al.,
2009; Haskin, 1998; Zhu MH et al., 2010). In addition, some craters,
such as Schwarzshild (70.1°N, 121.2°E), have a higher Z, value. As a
consequence of meteorite collision impact, dark basalt, including
some heavier elements, is deposited in the bottoms of craters.
Therefore, these regions display a notable characteristic in the
map of average atomic number.

A couple of medium Za value (~12.5) regions can be identified on
the Zy map. Two of them, surrounded by irregular oval rings, are
West Oceanus Procellarum and Mare Frigoris. Others are around
some large craters, such as Sinus Iridum (44.1°N, 31.5°W). These re-
gions seem to be consistent with the distribution of KREEP as a
unique feature on the lunar surface. Although the reason for the
unique shape of average atomic number areas is still an open is-
sue, petrogenesis, impact melting (Delano and Ringwood, 1978),
or magma upwelling (Dymek, 1986; McKay, 1986; Taylor, 1982) are
considered possibilities. Diagenesis certainly played a significant
role in compositional differentiation. Therefore, the regionalized
medium Z, value concentration is affected by the course of mag-
matism beneath the KREEP terrane (Taylor, 2014; Taylor et al.,
2006).

Other than the above high and medium Z, regions, the majority
of the lunar surface has lower average atomic numbers. This is be-
cause the region is widely covered with lunabase, which basically

Ge L Q et al.: Mapping of the lunar surface on average atomic number
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Figure 6. The map of average atomic numbers of rock and soil on the lunar surface (with coordinate values for south and west being negative).
2354 sinus have both characteristics. Therefore, in Figure 6 some sinus
are filled with gradient color, such as Sinus Aestuum and Sinus
Iridum.
23.0+ Li6| TAll | /124
E —
22.5+ | f J 5. Conclusions
A f | AR A linear approximation for the relationship between position an-
= L20 Al7 | AlS T .
V22,04 ¢ Y nihilation radiation gamma flux from the lunar surface and the av-
% atel L erage atomic number of lunar rocks or soil has been established. A
21.5 simplified Monte Carlo model has been developed to confirm this
Equation y=ax method for evaluating average atomic number of the rock and
Value Standard Error .
21.04 L Intercept 0 = soil on the lunar surface. The method has been used to construct
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, = ; a map of average atomic number on a 150 kmx150 km grid from
2
1.0 1.5 ié,g 125 13.0 the Chang’e-1 GRS. The global map of average atomic number

Figure 7. The scatter diagram of the atomic mass of lunar rocks and
soils samples from A11, A12, A15,A16, A17,L16, L20, and L24 missions
and the average atomic number.

consists of mafic anorthosite (Korotev et al., 2003) and bytownite
anorthosite (Norman and Ryder, 1980; Warren, 1993, 2005), both
of which are rich in light elements, such as Mg, Ca, Na, and Ti.

From the above discussion, a couple of significant points can be
summarized. First, there is a strong correlation between the aver-
age atomic number and the concentration of iron in maria re-
gions, which is confirmed by gamma-ray spectra (Feldman et al.,
2002; Lawrence et al., 2002), neutron spectra (Elphic et al., 2002,
1998, 2000), and multispectral analysis (Ling ZC et al., 2011; Yan
BX et al., 2012). Second, there some high Z value spots surround-
ing the maria and scattered throughout the Moon. In the terrane,
these spots typically appear in crater areas. Lunar craters are a res-
ult of meteorite impact. Their structure allows the mantle below
the impact basin to upwell into the crater bottom and deposit
basalt (with a high Za value) that easily permeates into the litho-
sphere (Phillips and Lambeck, 1980; Wise and Yates, 1970). This
phenomenon is referred to as a mascon in geodetic gravimetry
(Byrne et al., 2015; Freed et al., 2014; Melosh et al., 2013; Miljkovi¢
et al,, 2015; Montesi, 2013; Thorey et al., 2015). Third, the average
atomic number in sinus areas is found on the gradient features
(from 12 to 13). As an extended part from the highlands to maria,

can differentiate the various types of lithology. The higher aver-
age atomic number (Zy>12.5) located in the maria regions is
closely related to different types of basalt, with the highest Zx
value of 13.2 found near Sinus Aestuum (10.9°N, 8.8°W). The West
Oceanus Procellarum and Mare Frigoris regions surrounded by ir-
regular oval rings are found to have medium Z values (~12.1),
which seems to be consistent with the distribution of KREEP as a
unique feature on the lunar surface. The lower average atomic
number (Za<11.5) regions cover the majority of the lunar surface
that is relatively dominated by anorthosite.
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